首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Objective

Early-onset colorectal cancer (CRC) represents a clinically distinct form of CRC that is often associated with a poor prognosis. Methylation levels of genomic repeats such as LINE-1 elements have been recognized as independent factors for increased cancer-related mortality. The methylation status of LINE-1 elements in early-onset CRC has not been analyzed previously.

Design

We analyzed 343 CRC tissues and 32 normal colonic mucosa samples, including 2 independent cohorts of CRC diagnosed ≤50 years old (n = 188), a group of sporadic CRC >50 years (MSS n = 89; MSI n = 46), and a group of Lynch syndrome CRCs (n = 20). Tumor mismatch repair protein expression, microsatellite instability status, LINE-1 and MLH1 methylation, somatic BRAF V600E mutation, and germline MUTYH mutations were evaluated.

Results

Mean LINE-1 methylation levels (±SD) in the five study groups were early-onset CRC, 56.6% (8.6); sporadic MSI, 67.1% (5.5); sporadic MSS, 65.1% (6.3); Lynch syndrome, 66.3% (4.5) and normal mucosa, 76.5% (1.5). Early-onset CRC had significantly lower LINE-1 methylation than any other group (p<0.0001). Compared to patients with <65% LINE-1 methylation in tumors, those with ≥65% LINE-1 methylation had significantly better overall survival (p = 0.026, log rank test).

Conclusions

LINE-1 hypomethylation constitutes a potentially important feature of early-onset CRC, and suggests a distinct molecular subtype. Further studies are needed to assess the potential of LINE-1 methylation status as a prognostic biomarker for young people with CRC.  相似文献   

2.

Background

Colorectal cancer (CRC) is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation.

Methodology/Principal Findings

Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS) and microsatellite instable (MSI) colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function.

Conclusions/Significance

We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.  相似文献   

3.

Background

Activin receptor 2 (ACVR2) is commonly mutated in microsatellite unstable (MSI) colon cancers, leading to protein loss, signaling disruption, and larger tumors. Here, we examined activin signaling disruption in microsatellite stable (MSS) colon cancers.

Methods

Fifty-one population-based MSS colon cancers were assessed for ACVR1, ACVR2 and pSMAD2 protein. Consensus mutation-prone portions of ACVR2 were sequenced in primary cancers and all exons in colon cancer cell lines. Loss of heterozygosity (LOH) was evaluated for ACVR2 and ACVR1, and ACVR2 promoter methylation by methylation-specific PCR and bisulfite sequencing and chromosomal instability (CIN) phenotype via fluorescent LOH analysis of 3 duplicate markers. ACVR2 promoter methylation and ACVR2 expression were assessed in colon cancer cell lines via qPCR and IP-Western blots. Re-expression of ACVR2 after demethylation with 5-aza-2′-deoxycytidine (5-Aza) was determined. An additional 26 MSS colon cancers were assessed for ACVR2 loss and its mechanism, and ACVR2 loss in all tested cancers correlated with clinicopathological criteria.

Results

Of 51 MSS colon tumors, 7(14%) lost ACVR2, 2 (4%) ACVR1, and 5(10%) pSMAD2 expression. No somatic ACVR2 mutations were detected. Loss of ACVR2 expression was associated with LOH at ACVR2 (p<0.001) and ACVR2 promoter hypermethylation (p<0.05). ACVR2 LOH, but not promoter hypermethylation, correlated with CIN status. In colon cancer cell lines with fully methylated ACVR2 promoter, loss of ACVR2 mRNA and protein expression was restored with 5-Aza treatment. Loss of ACVR2 was associated with an increase in primary colon cancer volume (p<0.05).

Conclusions

Only a small percentage of MSS colon cancers lose expression of activin signaling members. ACVR2 loss occurs through LOH and ACVR2 promoter hypermethylation, revealing distinct mechanisms for ACVR2 inactivation in both MSI and MSS subtypes of colon cancer.  相似文献   

4.

Background

Different DNA aberrations processes can cause colorectal cancer (CRC). Herein, we conducted a comprehensive molecular characterization of 27 CRCs from Iranian patients.

Materials and Methods

Array CGH was performed. The MSI phenotype and the methylation status of 15 genes was established using MSP. The CGH data was compared to two established lists of 41 and 68 cancer genes, respectively, and to CGH data from African Americans. A maximum parsimony cladogram based on global aberrations was established.

Results

The number of aberrations seem to depend on the MSI status. MSI-H tumors displayed the lowest number of aberrations. MSP revealed that most markers were methylated, except RNF182 gene. P16 and MLH1 genes were primarily methylated in MSI-H tumors. Seven markers with moderate to high frequency of methylation (SYNE1, MMP2, CD109, EVL, RET, LGR and PTPRD) had very low levels of chromosomal aberrations. All chromosomes were targeted by aberrations with deletions more frequent than amplifications. The most amplified markers were CD248, ERCC6, ERGIC3, GNAS, MMP2, NF1, P2RX7, SFRS6, SLC29A1 and TBX22. Most deletions were noted for ADAM29, CHL1, CSMD3, FBXW7, GALNS, MMP2, NF1, PRKD1, SMAD4 and TP53. Aberrations targeting chromosome X were primarily amplifications in male patients and deletions in female patients. A finding similar to what we reported for African American CRC patients.

Conclusion

This first comprehensive analysis of CRC Iranian tumors reveals a high MSI rate. The MSI tumors displayed the lowest level of chromosomal aberrations but high frequency of methylation. The MSI-L were predominantly targeted with chromosomal instability in a way similar to the MSS tumors. The global chromosomal aberration profiles showed many similarities with other populations but also differences that might allow a better understanding of CRC''s clinico-pathological specifics in this population.  相似文献   

5.
6.

Background

The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX).

Materials and Methods

The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models.

Results

The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status.

Conclusions

The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.  相似文献   

7.

Background

The lung is a frequent site of colorectal cancer (CRC) metastases. After surgical resection, lung metastases recurrences have been related to the presence of micrometastases, potentially accessible to a high dose chemotherapy administered via adjuvant isolated lung perfusion (ILP). We sought to determine in vitro the most efficient drug when administered to CRC cell lines during a short exposure and in vivo its immediate and delayed tolerance when administered via ILP.

Methods

First, efficacy of various cytotoxic molecules against a panel of human CRC cell lines was tested in vitro using cytotoxic assay after a 30-minute exposure. Then, early (operative) and delayed (1 month) tolerance of two concentrations of the molecule administered via ILP was tested on 19 adult pigs using hemodynamic, biological and histological criteria.

Results

In vitro, gemcitabine (GEM) was the most efficient drug against selected CRC cell lines. In vivo, GEM was administered via ILP at regular (20 µg/ml) or high (100 µg/ml) concentrations. GEM administration was associated with transient and dose-dependant pulmonary vasoconstriction, leading to a voluntary decrease in pump inflow in order to maintain a stable pulmonary artery pressure. After this modulation, ILP using GEM was not associated with any systemic leak, systemic damage, and acute or delayed histological pulmonary toxicity. Pharmacokinetics studies revealed dose-dependant uptake associated with heterogenous distribution of the molecule into the lung parenchyma, and persistent cytotoxicity of venous effluent.

Conclusions

GEM is effective against CRC cells even after a short exposure. ILP with GEM is a safe and reproducible technique.  相似文献   

8.

Background

Clock genes drive about 5–15% of genome-wide mRNA expression, and disruption of the circadian clock may deregulate the cell''s normal biological functions. Cryptochrome 1 is a key regulator of the circadian feedback loop and plays an important role in organisms. The present study was conducted to investigate the expression of Cry1 and its prognostic significance in colorectal cancer (CRC). In addition, the function of Cry1 in human CRC was investigated in cell culture models.

Methods

Real-time quantitative PCR, Western blot analysis and immunohistochemistry were used to explore Cry1 expression in CRC cell lines and primary CRC clinical specimens. MTT and colony formation assays were used to determine effects on cellular proliferation ability. The animal model was used to explore the Cry1 impact on the tumor cellular proliferation ability in vivo. Transwell assays were performed to detect the migration ability of the cell lines. Statistical analyzes were applied to evaluate the diagnostic value and the associations of Cry1 expression with clinical parameters.

Results

Cry1 expression was up regulated in the majority of the CRC cell lines and 168 primary CRC clinical specimens at the protein level. Clinical pathological analysis showed that Cry1 expression was significantly correlated with lymph node metastasis (p = 0.004) and the TNM stage (p = 0.003). High Cry1 expression was associated with poor overall survival in CRC patients (p = 0.010). Experimentally, we found that up-regulation of Cry1 promoted the proliferation and migration of HCT116 cells, while down-regulation of Cry1 inhibited the colony formation and migration of SW480 cells.

Conclusions

These results suggest that Cry1 likely plays important roles in CRC development and progression andCry1 may be a prognostic biomarker and a promising therapeutic target for CRC.  相似文献   

9.

Background

Colorectal cancer (CRC) represents a morphologic and molecular heterogenic disease. This heterogeneity substantially impairs drug effectiveness and prognosis. The subtype of mismatch repair deficient (MMR-D) CRCs, accounting for about 15% of all cases, shows particular differential responses up to resistance towards currently approved cytostatic drugs. Pre-clinical in vitro models representing molecular features of MMR-D tumors are thus mandatory for identifying biomarkers that finally help to predict responses towards new cytostatic drugs. Here, we describe the successful establishment and characterization of three patient-derived MMR-D cell lines (HROC24, HROC87, and HROC113) along with their corresponding xenografts.

Methodology

MMR-D cell lines (HROC24, HROC87, and HROC113) were established from a total of ten clinicopathological well-defined MMR-D cases (120 CRC cases in total). Cells were comprehensively characterized by phenotype, morphology, growth kinetics, invasiveness, and molecular profile. Additionally, response to clinically relevant chemotherapeutics was examined in vitro and in vivo.

Principal Findings

Two MMR-D lines showing CIMP-H derived from sporadic CRC (HROC24: K-raswt, B-rafmut, HROC87: K-raswt, B-rafmut), whereas the HROC113 cell line (K-rasmut, B-rafwt) was HNPCC-associated. A diploid DNA-status could be verified by flow cytometry and SNP Array analysis. All cell lines were characterized as epithelial (EpCAM+) tumor cells, showing surface tumor marker expression (CEACAM+). MHC-class II was inducible by Interferon-γ stimulation. Growth kinetics as well as invasive potential was quite heterogeneous between individual lines. Besides, MMR-D cell lines exhibited distinct responsiveness towards chemotherapeutics, even when comparing in vitro and in vivo sensitivity.

Conclusions

These newly established and well-characterized, low-passage MMR-D cell lines provide a useful tool for future investigations on the biological characteristics of MMR-D CRCs, both of sporadic and hereditary origin. Additionally, matched patient-derived immune cells allow for comparative genetic studies.  相似文献   

10.
11.

Purpose

Microsatellite instability (MSI) is used to screen colorectal cancers (CRC) for Lynch Syndrome, and to predict outcome and response to treatment. The current technique for measuring MSI requires DNA from normal and neoplastic tissues, and fails to identify tumors with specific DNA mismatch repair (MMR) defects. We tested a panel of five quasi-monomorphic mononucleotide repeat markers amplified in a single multiplex PCR reaction (pentaplex PCR) to detect MSI.

Experimental Design

We investigated a cohort of 213 CRC patients, comprised of 114 MMR-deficient and 99 MMR-proficient tumors. Immunohistochemical (IHC) analysis evaluated the expression of MLH1, MSH2, PMS2 and MSH6. MSI status was defined by differences in the quasi-monomorphic variation range (QMVR) from a pool of normal DNA samples, and measuring differences in allele lengths in tumor DNA.

Results

Amplification of 426 normal alleles allowed optimization of the QMVR at each marker, and eliminated the requirement for matched reference DNA to define MSI in each sample. Using ≥2/5 unstable markers as the criteria for MSI resulted in a sensitivity of 95.6% (95% CI = 90.1–98.1%) and a positive predictive value of 100% (95% CI = 96.6%–100%). Detection of MSH6-deficiency was limited using all techniques. Data analysis with a three-marker panel (BAT26, NR21 and NR27) was comparable in sensitivity (97.4%) and positive predictive value (96.5%) to the five marker panel. Both approaches were superior to the standard approach to measuring MSI.

Conclusions

An optimized pentaplex (or triplex) PCR offers a facile, robust, very inexpensive, highly sensitive, and specific assay for the identification of MSI in CRC.  相似文献   

12.

Introduction

Colorectal adenocarcinomas (CRC) developed through serrated pathway seem to present particular behavior compared with the non-serrated ones, but recognition of them is difficult to do. The aim of our paper was to establish some criteria to facilitate their identification.

Materials and Methods

In 170 consecutive CRCs, we performed immunohistochemical staining with Cytokeratin 7 (CK7) and Cytokeratin 20 (CK20) and also with p53 and MLH-1. At the same time, we analyzed BRAF and K-ras mutations and the microsatellite status of CRC.

Results

26.47% of cases expressed CK7, and 16.47% were CK20-negative. Diffuse positivity for CK7 was associated in the proximal colon with CK20 negativity or weak positivity, BRAF mutations, lack of K-ras mutations, and p53 and MLH-1 negativity. All these cases were microsatellite-unstable and were diagnosed in stage II. Those cases from the distal colon and rectum that expressed CK7 were K-ras-mutated and had low p53 index and MLH-1 positivity, independent of the CK20 expression.

Conclusions

CK7, associated with MLH-1 and p53 expression, and also with the microsatellite status, BRAF and K-ras pattern, might be used to identify the CRC potentially going through serrated pathway. The serrated pathway adenocarcinomas of the proximal colon that do not display the morphological features of this pattern are more frequent CK7+/p53−/MLH-1−/BRAF-mutated/K-ras-wt/MSI cases, but those located in the distal colorectal segments seem to be CK7+/CK20+/p53−/MLH-1+/BRAF wt/K-ras-mutated/MSS cases.  相似文献   

13.

Purpose

To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC).

Experimental Design

PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM) model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.

Results

In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC50 = 9.0–14.3 nM). Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01) vs. a 43% decrease (p = 0.008) in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003), no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013).

Conclusions

These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.  相似文献   

14.

Objective

DNA aberrations that cause colorectal cancer (CRC) occur in multiple steps that involve microsatellite instability (MSI) and chromosomal instability (CIN). Herein, we studied CRCs from AA patients for their CIN and MSI status.

Experimental Design

Array CGH was performed on 30 AA colon tumors. The MSI status was established. The CGH data from AA were compared to published lists of 41 TSG and oncogenes in Caucasians and 68 cancer genes, proposed via systematic sequencing for somatic mutations in colon and breast tumors. The patient-by-patient CGH profiles were organized into a maximum parsimony cladogram to give insights into the tumors'' aberrations lineage.

Results

The CGH analysis revealed that CIN was independent of age, gender, stage or location. However, both the number and nature of aberrations seem to depend on the MSI status. MSI-H tumors clustered together in the cladogram. The chromosomes with the highest rates of CGH aberrations were 3, 5, 7, 8, 20 and X. Chromosome X was primarily amplified in male patients. A comparison with Caucasians revealed an overall similar aberration profile with few exceptions for the following genes; THRB, RAF1, LPL, DCC, XIST, PCNT, STS and genes on the 20q12-q13 cytoband. Among the 68 CAN genes, all showed some level of alteration in our cohort.

Conclusion

Chromosome X amplification in male patients with CRC merits follow-up. The observed CIN may play a distinctive role in CRC in AAs. The clustering of MSI-H tumors in global CGH data analysis suggests that chromosomal aberrations are not random.  相似文献   

15.

Background

Colorectal cancers (CRCs) with microsatellite instability (MSI) are associated with a good prognosis and a high density of tumor-infiltrating lymphocytes (TILs). We have undertaken to determine the link between TIL densities and MSI CRC histologic features.

Patients and Methods

Using tissue microarrays, T-cell sub-population infiltration, including T cells (CD3), cytotoxic T cells (CD8) and regulatory T cells (FoxP3) were studied in 86 MSI CRCs. We separately analyzed TILs of the stromal and epithelial compartments in the tumor center, the tumoral invasion margin and associated normal tissue.

Results

For FoxP3+ TIL density in the tumor center stromal compartment, we found a strong negative correlation with T4 stage (p = 0.01), node invasion (p<0.001) and VELIPI (vascular emboli, lymphatic invasion and perinervous invasion) criteria (p = 0.002).

Conclusion

The strong correlation between regulatory T cell density and the absence of VELIPI criteria suggests that this sub-group of T cells is preferentially associated with less invasive tumors.  相似文献   

16.
17.

Objective

Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50–60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells.

Methods

High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays.

Results

Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting.

Conclusion

Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract).  相似文献   

18.
19.

Purpose

To determine the frequency and prognostic value of elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) in metastatic colorectal cancer (mCRC) patients in relation to microsatellite instability (MSI) status and MSH3 protein expression.

Material and Methods

The frequency of EMAST was evaluated in mCRC patients with MSI tumors and microsatellite stable (MSS) tumors. A literature overview was performed to compare the frequency of EMAST in our study with existing data. Immunohistochemistry for MSH3 was compared with EMAST status. Outcome was studied in terms of overall survival (OS) of mCRC patients with MSI and MSS tumors.

Results

EMAST was evaluated in 89 patients with MSI tumors (including 39 patients with Lynch syndrome) and 94 patients with MSS tumors. EMAST was observed in 45.9% (84 out of 183) of patients, with an increased frequency in MSI tumors (79.8% versus 13.8%, p < 0.001). We found no correlation between EMAST and MSH3 protein expression. There was no effect of EMAST on prognosis in patients with MSS tumors, but patients with MSI / non-EMAST tumors had a significantly better prognosis than patients with MSI / EMAST tumors (OS: HR 3.22, 95% CI 1.25-8.30).

Conclusion

Frequency of EMAST was increased in mCRC patients with MSI tumors, compared to MSS tumors. Our data suggest that the presence of EMAST correlates with worse OS in these patients. There was no effect of EMAST on the prognosis of patients with MSS tumors. A limitation of our study is the small number of patients in our subgroup analysis.  相似文献   

20.

Background

Long noncoding RNAs (lncRNAs) play widespread roles in gene regulation and cellular processes. However, the functional roles of lncRNAs in colorectal cancer (CRC) are not yet well elucidated. The aim of the present study was to measure the levels of lncRNA 91H expression in CRC and evaluate its clinical significance and biological roles in the development and progression of CRC.

Methods

91H expression and copy number variation (CNV) were measured in 72 CRC tumor tissues and adjacent normal tissues by real-time PCR. The biological roles of 91H were evaluated by MTT, scratch wound assay, migration and invasion assays, and flow cytometry.

Results

91H was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent normal tissue and a normal human intestinal epithelial cell line. Moreover, 91H overexpression was closely associated with distant metastasis and poor prognosis in patients with CRC, except for CNV of 91H. Multivariate analysis indicated that 91H expression was an independent prognostic indicator, as well as distant metastasis. Our in vitro data indicated that knockdown of 91H inhibited the proliferation, migration, and invasiveness of CRC cells.

Conclusions

91H played an important role in the molecular etiology of CRC and might be regarded as a novel prognosis indicator in patients with CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号