首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.  相似文献   

3.
This study was conducted to determine effects of dietary supplementation with 1 % l-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.  相似文献   

4.
To compare the mRNA level of angiogenic factor vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, and MMP-9 in cultured human brain arteriovenous malformation (AVM) endothelial cells (ECs) and normal brain endothelial cells (BECs). Tissue explants both from deformed vessels of AVM and normal microvessel were put into culture for endothelial cells. After the monolayer adherent ECs reached confluence, they were tested with endothelial specific marker CD34 and von Willebrand factor (vWF) by immunochemical assay. mRNA levels of VEGF-A, MMP-2, and MMP-9 in AVM endothelial cells (AVMECs) and BECs were measured by PCR. Immunostaining confirmed that more than 95 % of the cultured cells were CD34 (Fig. 1b) and/or vWF positive. Expression levels of VEGF-A and MMP-2 mRNAs were significantly higher in AVMECs than in BECs. The MMP-9 level was also increased in AVMECs, but the difference was not statistically significant. Vascular tissue explants adherent method is a better approach for isolation and culture of AVMECs. Cultured AVMECs expressed higher angiogenic factors (VEGF, MMP-2) than the controlled BECs, implicating angiogenesis plays an important role in the pathogenesis of AVM.  相似文献   

5.
The potential role of parameters in the reduction of hexavalent chromium [Cr(VI)] by Pseudomonas aeruginosa is not well documented. In this study, laboratory batch studies were conducted to assess the effect of a variety of factors, e.g., carbon sources, salinity, initial Cr(VI) concentrations, co-existing ions and a metabolic inhibitor, on microbial Cr(VI) reduction to Cr(III) by P. aeruginosa AB93066. Strain AB93066 tolerated up to 400 mg/L of Cr(VI) in nutrient broth medium compared to only 150 mg/L of Cr(VI) in nutrient agar. This bacteria exhibited different levels of resistance against Pb(II) (200 mg/L), Cd(II) (100 mg/L), Ni(II) (100 mg/L), Cu(II) (100 mg/L), Co(II) (50 mg/L) and Hg(II) (5 mg/L). Cr(VI) reduction was significantly promoted by the addition of glucose and glycerine but was strongly inhibited by the presence of methanol and phenol. The rate of Cr(VI) reduction increased with increasing concentrations of Cr(VI) and then decreased at higher concentrations. The presence of Ni(II) stimulated Cr(VI) reduction, while Pb(II), Co(II) and Cd(II) had adverse impact on reduction ability of this strain. Cr(VI) reduction was also inhibited by high levels of NaCl, various concentrations of sodium azide and 20 mM of SO4 2?, MoO4 2?, NO3 ?, PO4 3?. No significant relationship was observed between Cr(VI) reduction and redox potential of the culture medium. Scanning electron microscopy showed visible morphological changes in the cells due to chromate stress. Fourier transform infrared spectroscopy analysis revealed chromium species was likely to form complexes with certain functional groups such as carboxyl and amino groups on the surface of P. aeruginosa AB93066. Overall, above results are beneficial to the bioremediation of chromate-polluted industrial wastewaters.  相似文献   

6.
Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface. Analysis by scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the addition of 3-MPTMS resulted in an alternation of the chemical characteristics of the solution. Atomic force microscopy imaging supported the notion that silicon surface modification is the most important factor on tribological properties of materials along with ligand-modified Au NPs. The density of Au NPs on a silicon surface was significantly dependent on several factors, including the concentration of colloidal Au NPs, deposition time, and concentration of 3-MPTMS solution, while temperature range which was used throughout experiment was determined to have no significant effect. A relatively high density of Au NPs forms on the silicon surface as the concentrations of Au NPs and 3-MPTMS are increased. In addition, the maximum deposition of Au NPs on silicon wafer was observed at 3 h, while the effects of temperature variation were minimal.  相似文献   

7.
Twenty varieties of maize (Zea mays, Poaceae) were studied through 11 attributes in three to seven randomly selected plants of each variety with a view to understanding the effect of cob characters on technologically desirable grain qualities. Canonical discriminant analysis showed thatproductivity (determined by total grain weight/cob, cob diameter and average grain weight) was the most discriminating among varieties followed by round grains fraction (represented by whole top and middle flat grains, number of rows and grain count/surface area), middle flat grains (composed of middle flat grains and grain count/surface area) and shape of the cob (determined by shape index, total grain weight/cob and cob diameter), which accounted for 35.1, 18.3, 12.2, and 9.8% of the total variance, respectively. In the light of these results, tentative norms have been suggested to evolve maize varieties of superior technological properties and yet retain high productivity. A cylindrical cob of large diameter with highest number of grains/area and smallest possible number of rows together constituted an ideal combination to achieve the objectives. Such possibilities in the light of available information are discussed.  相似文献   

8.
9.
Transient receptor potential vanilloid type 4 (TRPV4) channels are expressed in the central nervous system, but their role in regulating the aging process under physiological and pathological conditions is still largely unknown. To identify age-related changes in the TRPV4 channel that contribute to the central nervous system, we investigated the distribution of TRPV4 in the brain and spinal cord regions of adult and aged rats. The expression of TRPV4 in the brain and spinal cord of adult and aged Sprague–Dawley rats was compared using immunohistochemistry performed with antibodies recognizing TRPV4 on free floating sections and western blotting analysis. TRPV4 immunoreactivity was significantly increased in the cerebral cortex, hippocampal formation, thalamus, basal nuclei, cerebellum and spinal cord of aged rats compared with adult control rats. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of aged rats. In addition, TRPV4 immunoreactivity was increased in the spinal cord, hippocampal formation, thalamus, basal nuclei and cerebellum of aged rats. This first demonstration of age-related increases in TRPV4 expression in the brain and spinal cord may provide useful data for investigating the pathogenesis of age-related neurodegenerative diseases. The exact regulatory mechanism and its functional significance require further elucidation.  相似文献   

10.
The receptor for advanced glycation end-products (RAGE), a multiligand receptor of the immunoglobulin superfamily, takes part in various inflammatory processes. The role of this receptor in the context of intercellular communication, like nanotube (NT)-mediated interaction, is largely unknown. Here, we use cell cultures of human and murine peritoneal mesothelial cells as well as murine kidneys from wild-type and RAGE knockout mouse models to assess the role of RAGE in NT formation and function. We show that loss of RAGE function results in reduced NT numbers under physiological conditions and demonstrate the involvement of MAP kinase signaling in NT formation. Additionally, we show for the first time the existence of NTs in murine kidney tissue and confirm the correlation of RAGE expression and NT numbers. Under elevated oxidative stress conditions like renal ischemia or peritoneal dialysis, we demonstrate that RAGE absence does not prevent NT formation. Rather, increased NT numbers and attenuated kidney tissue damage could be observed, indicating that, depending on the predominant conditions, RAGE affects NT formation with implications for cellular communication.  相似文献   

11.
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.  相似文献   

12.
13.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   

14.
15.
The mahseers are an important group of fishes endemic to Asia with most species considered threatened. Conservation plans to save declining wild populations are hindered by unstable taxonomy, and detailed systematic review could form a solid platform for future management and conservation. D-loop and cytochrome c oxidase I (COI) mtDNA sequences were examined in nine mahseer species of Tor, Neolissochilus, and Naziritor. Pseudogenes amplified in a portion of the species limited the utility of the D-loop region. ABGD analysis, NJ, ML, and MP methods and genetic distance (TrN?+?I?+?G) using COI data revealed concordant species delimiting patterns. The three genera were monophyletic, separated as distinct clades (TrN?+?I?+?G 0.064 to 0.106), and Naziritor was flagged as a separate genus, distinct from Puntius (TrN?+?I?+?G 0.196). Out of seven nominal species known for Tor cogeners from India, only five were recovered with mtDNA data (TrN?+?I?+?G 0.000 to 0.037) and two species could not be distinguished with the molecular data set employed. Tor mosal, synonymized as Tor putitora, was rediscovered as a distinct species (TrN?+?I?+?G 0.031) based on its type locality. Tor mussulah was confirmed as a separate species (TrN?+?I?+?G 0.019 to 0.026). Two valid species, Tor macrolepis and T. mosal mahanadicus, were not distinct from T. putitora (TrN?+?I?+?G 0.00). The high divergence with mtDNA data failed to validate T. mosal mahanadicus as a subspecies of T. mosal (TrN?+?I?+?G 0.031). Morphological outliers discovered within the distribution range of Tor tor (TrN?+?I?+?G 0.022 to 0.025) shared the same lineage with T. putitora (TrN?+?I?+?G 0.002 to 0.005), indicating a new extended distribution of the Himalayan mahseer T. putitora in the rivers of the Indian central plateau. The findings indicate the need for integrating molecular and morphological tools for taxonomic revision of the Tor and Naziritor genera, so that taxa are precisely defined for accurate in situ and ex situ conservation decisions.  相似文献   

16.
The prevalence of osteoporosis in older patients with chronic obstructive pulmonary disease (COPD) is higher than in the age-matched elderly patients, but the exact cause in relation to COPD is not clear. We hypothesized that the underlying causes for this difference are related to bone metabolism with the possible risk factors that include the duration of COPD, GOLD grade, cor pulmonale, the frequencies of acute exacerbations within the past year, smoking and inhaled corticosteroid therapy. We conducted a matched-pair study of 100 patients aged older than 65 years at the Southwest Hospital from May to November 2012. The enrolled patients with COPD were matched to controls for age and gender. Clinical characteristics of cohorts were recorded. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry and osteoporosis was diagnosed according to the definition of WHO. All cohorts accepted bone metabolism marker measurement, including Procollagen type 1 aminoterminal propeptide (P1NP), β-C-telopeptides of type I collagen (βCTX), and N-terminal midmolecule fragment osteocalcin (N-MID OC). Statistical analysis was calculated using the student’s t test, ANOVA and multiple regression analysis at a significance level set at a p < 0.05. Circulating biochemical markers of bone formation (P1NP), resorption (βCTX) and turnover (N-MID OC) were significantly lower in the COPD group than control group, while mean 25-OH Vitamin D was similar in two groups. The P1NP, βCTX, and N-MID OC were still lower in men with COPD, but only P1NP was lower in women with COPD compared to that of controls. Multiple regression analysis in COPD group suggests that age, the frequency of acute exacerbation, and BMD are independent risk factors for P1NP. The frequency of acute exacerbation within the past one year and 25-OH D level are independent risk factors for βCTX; the frequency of acute exacerbation is the only independent risk factor for N-MID OC. These were significant differences in bone metabolism in patients with or without COPD. These results should help us to further understand the cause of osteoporosis and fractures and conduce to prevent osteoporosis in patients with COPD.  相似文献   

17.
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor of the immunoglobulin superfamily that has been implicated in multiple neuronal and inflammatory stress processes. In this study, we examined changes in RAGE immunoreactivity and its protein levels in the gerbil hippocampus (CA1-3 regions) after 5 min of transient global cerebral ischemia. The ischemic hippocampus was stained with cresyl violet, neuronal nuclei (a neuron-specific soluble nuclear antigen) antibody and Fluoro-Jade B (a marker for neuronal degeneration). 5 days after ischemia–reperfusion, delayed neuronal death occurred in the stratum pyramidale of the CA1 region. RAGE immunoreactivity was not detected in any regions of the CA1-3 regions of the sham-group; the immunoreactivity was markedly increased only in the CA1 region from 3 days after ischemia–reperfusion. On the other hand, RAGE immunoreactivity was newly expressed in astrocytes, not in microglia. Western blot analysis showed that RAGE protein level was highest at 5 days post-ischemia. In brief, both the RAGE immunoreactivity and protein level were distinctively increased in astrocytes in the ischemic CA1 region from 3 days after transient cerebral ischemia. These results indicate that the increase of RAGE expression in astrocytes after ischemia–reperfusion may be related to the ischemia-caused activation of astrocytes in the ischemic CA1 region.  相似文献   

18.
Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and accumulation of the abnormal form of the scrapie prion protein (PrP). Rutin is a flavonoid that occurs naturally in plant-derived beverages and foods and is used in traditional and folkloric medicine worldwide. In the present study, we evaluated the protective effects of rutin against PrP fragment (106–126)-induced neuronal cell death. Rutin treatment blocked PrP(106–126)-mediated increases in reactive oxygen species production and nitric oxide release and helped slowing the decrease of neurotrophic factors that results from PrP accumulation. Rutin attenuated PrP(106–126)-associated mitochondrial apoptotic events by inhibiting mitochondrial permeability transition and caspase-3 activity and blocking expression of the apoptotic signals Bax and PARP. Additionally, rutin treatment significantly decreased the expression of the death receptor Fas and its ligand Fas-L. Overall, our results demonstrated that rutin protects against the neurodegenerative effects of prion accumulation by increasing production of neurotropic factors and inhibiting apoptotic pathway activation in neuronal cells. These results suggested that rutin may have clinical benefits for prion diseases and other neurodegenerative disorders.  相似文献   

19.
Interleukin-13 (IL-13) is associated with the production of collagen in airway remodelling of asthma. Yet, the molecular mechanisms underlying IL-13 induction of collagen remain unclear; the aim of this study is to address this issue. IL-13 dose- and time-dependently-induced collagen I production in primary cultured airway fibroblasts; this was accompanied with the STAT6 phosphorylation, and pre-treatment of cells with JAK inhibitor suppressed IL-13-induced collagen I production. Further study indicated that IL-13 stimulated JAK/STAT6-dependent PDGF production and subsequent ERK1/2 MAPK activation in airway fibroblasts, and the presence of either PDGF receptor blocker or MEK inhibitor partially suppressed IL-13-induced collagen I production. Taken together, our study suggests that activation of JAK/STAT6 signal pathway and subsequent PDGF generation and resultant ERK1/2 MAPK activation mediated IL-13-induced collagen I production in airway fibroblasts.  相似文献   

20.
As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号