首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Spheroplasts of a petite mutant of the amylolitic Saccharomyces diastaticus 1376 yeast strain were successfully fused with spheroplasts of a flocculent and respiratory competent Saccharomyces cerevisiae 1161 yeast strain.Flocculent and non-flocculent stable recombinants were recovered after regeneration of the cell walls all of which formed halos around their colonies in media containing starch/dextrin as carbon source. The sporulation ability varied in some of the fusion products and the possible influence of genetic instability is discussed.  相似文献   

2.
The construction of a whole-cell biocatalyst with its sequential reaction has been performed by the genetic immobilization of two amylolytic enzymes on the yeast cell surface. A recombinant strain of Saccharomyces cerevisiae that displays glucoamylase and α-amylase on its cell surface was constructed and its starch-utilizing ability was evaluated. The gene encoding Rhizopus oryzae glucoamylase, with its own secretion signal peptide, and a truncated fragment of the α-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast α factor, respectively, were fused with the gene encoding the C-terminal half of the yeast α-agglutinin. The constructed fusion genes were introduced into the different loci of chromosomes of S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The glucoamylase and α-amylase activities were not detected in the culture medium, but in the cell pellet fraction. The transformant strain co-displaying glucoamylase and α-amylase could grow faster on starch as the sole carbon source than the transformant strain displaying only glucoamylase. Received: 16 June 1998 / Received last revision: 21 August 1998 / Accepted: 3 September 1998  相似文献   

3.
Summary One haploid and one diploid strain of Saccharomyces diastaticus carrying genes responsible for glucoamylase synthesis were fused with a brewing polyploid Saccharomyces uvarum lager strain. With the spheroplast fusion technique, the ability to use dextrin and starch was introduced in the brewing yeast. Spheroplasts of the strains to be used were obtained by enzymatic digestion of the cell walls. Fusion took place in polyethylene glycol; complete cells were then regenerated in hypertonic medium containing 3% agar at 37°C. In the first fusion experiment melibiose was used as carbon source; in the second fusion experiment glycerol was employed as carbon source, for the parental Saccharomyces diastaticus diploid strain was a petite mutant. Fusion products were capable of utilizing melibiose and dextrin as carbon sources.  相似文献   

4.
Summary A new selection method based on the use of chlorsulfuron (CS) resistance as the selection marker for protoplast fusion in industrial yeast has been introduced using the system of protoplast fusion. A petite mutant of a spontaneously CS-resistant distiller's Saccharomyces cerevisiae strain and a wild-type CS-sensitive strain of the osmotolerant yeast Zygosaccharomyces mellis were fused in order to obtain a distiller's yeast suitable for fermentations on concentrated molasses. Fusion products were isolated as large colonies on minimal glycerol agar with 0.5 mg ml–1 of the herbicide Glean (75% CS). Following prolonged cultivation on molasses, stable hybrid subxlones were obtained. Offprint requests to: F. Cvrková  相似文献   

5.
Summary A method has been developed for the transfer of genes from other yeast strains and species to industrial yeast strains, using a haploid, kar1-1 mutant strain of Saccharomyces cerevisiae as a vector. The sta2 gene, conferring the ability to metabolize starch was transferred from an autotrophic haploid strain of S. cerevisiae (S. diastaticus) and the melibiose-metabolism (mel) gene(s), from S. kluyveri, to the kar1-1 mutant [K5-5A; ( ade2 his4 can1 gal) by normal mating and protoplast fusion. From this strain, the genes were transferred to baker's yeast and brewing yeast strains, which did not utilize starch, and to baker's yeast strains, which did not utilize melibiose, by protoplast fusion, spore-cell pairing, or rare-mating. Strains that utilized starch or melibiose were obtained by all three methods. Pulsed-field gel electrophoresis preparations showed little change in the mobility of the chromosomes of the hybrids. The most probable explanation for the results obtained is that single chromosomes were transferred, first, from the donor strains to the kar1-1 haploid mutant strain, and then from the kar1-1 vector to the recipient industrial strain of S. cerevisiae. The transfer of the genes is probably accomplished through formation of disomic strains and the, in the case of the hybrids that metabolize starch, by integration of the sta2 gene into the genome of the industrial yeast strains.  相似文献   

6.
Protoplast fusion was carried out between a saké brewer’s yeast strain, Saccharomyces cerevisiae Kyokai 7, and a lactose utilizing yeast strain, Kluyveromyces lactis T396. A stable hybrid, PN 13, which was selected from the many resultant fusants, showed physiologically complemented traits with respect to sugar utilization, vitamin requirements and so on. Biochemical investigations also revealed that fusant PN 13 was an intermediate hybrid between the parental strains. In glucose and lactose media, moreover, the fusant grew and produced ethanol at higher rates than K. lactis T396.  相似文献   

7.
Summary The ability of a polyploid/aneuploidSaccharomyces diastaticus spheroplast fusion product and a diploidSaccharomyces diastaticus hybridization product, to produce ethanol from dextrinized cassava starch with varying amounts of supplemented glucoamylase (amyloglucosidase), was investigated. It was found that the added glucoamylase could be reduced by over 50% using these glucoamylase producing strains as compared to a commercially availableSaccharomyces cerevisiae strain commonly used in ethanol producing industries.  相似文献   

8.
Protoplasts of a xylose-fermenting yeast strain (a fusion product of Pachysolen tannophilus and Saccharomyces cerevisiae) were fused with isolated nuclei of the xylan degrading filamentous fungus Fusarium moniliforme. Polyethyleneglycol 4000 was used as the fusogenic agent. Fourteen stable hybrids showing xylanase activity were obtained. It can be assumed that this ability was acquired from the nuclear genome of the fungus, since the parental yeast strain did not show any xylanase activity. The enzymatic activity was determined quantitatively. The parental strain of the fungus reached its maximum xylanase activity of 796 nkat/ml at 96 h of growth. Four of the hybrids had a xylanase activity of between 211 and 297 nkat/l at 24 h of growth. Zymograms of these hybrids showed the presence of xylanases when grown on xylan as the sole carbon source. Using pulse field electrophoresis gels, no difference between the chromosome pattern of the fusion products and the parental yeast strain was observed.  相似文献   

9.
Summary Genetic studies were made on the genes determining the ability to ferment starch (STA) in five strains of S. diastaticus different in origins, strain IFO 1046, IFO 1015, Y 8, Y 13 and C1372. With the heterothallic strain IFO 1046, the genes STA1 and STA2 were separated by single spore cultures and crosses to S. cerevisiae. Strain Y 8 did not sporulate, but the progeny having gene STA3 was isolated from the hybrid between the respiratory deficient mutant of strain Y 8 and S. cerevisiae obtained by the minimal plate mating technique. Strain IFO 1015 was the homothallic strain. The progeny having gene STA4 was isolated from the hybrid between IFO 1015 and S. cerevisiae. Strain Y 13 did not sporulate, but the progeny having gene STA5 was isolated according to the same technique as applied to strain Y 8. Haploid strain C1372 retained the gene STA6. The genes STA1 and STA4, and STA3, STA5 and STA6 were shown to be not separable by tetrad analysis.These results demonstrate the existence in S. diastaticus of at least 3 polymorphic genes for starch fermentation; STA1 (STA4), STA3 (STA5 and STA6), and STA2, and these STA genes are located on different linkage groups.  相似文献   

10.
Summary Most of 31 hybrids, obtained by fusion between the petite mutant of a nonsporous strain ofSaccharomyces cerevisiae SS-1090 and a Kar mutant K1 killer ofS. cerevisiae adenine and uracil auxotrophic, proved to be enologically as useful as the parent strain, and in some cases more so. In addition, all of them possessed killer factor, rendering them potentially more competitive against wild yeasts. Most of them also proved to be highly sporous.Research supported by National Research Council of Italy, Special Project RAISA, Sub-project N.4, Paper N.  相似文献   

11.
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.  相似文献   

12.
Summary Wild strains of Saccharomyces cerevisiae were isolated from dairy products, bakery goods, fresh fruit and vegetables, and tested for killer activity. Four isolates out of 238 strains possessed killer activity. The best of these was converted to the petite form and hybridized with an industrial strain of Saccharomyces cerevisiae by protoplast fusion. Thirty-eight out of 104 isolates had killer activity, and some of these had good dough-raising activity as well.  相似文献   

13.
As the first step for production of rat apolipoprotein E (rApoE) in Saccharomyces cerevisiae, the rApoE cDNA was cloned and its nucleotide sequence was determined. When the intact rApoE gene including the presequence-encoding region was expressed under the control of the yeast GAL7 promoter, no protein immunoreactive with anti-rApoE antibody was detected either in the culture medium or inside the cells. For the purpose of the extracellular production of rApoE, three fusion genes were constructed in which the mature rApoE-encoding sequence was connected after the pre, prepro, and whole regions of the gene encoding a fungal aspartic proteinase, Mucor pusillus rennin (MPP), since MPP is efficiently secreted from recombinant S. cerevisiae containing the MPP gene. When these three fusion genes were expressed under the control of the GAL7 promoter, only one, encoding the mature rApoE connected to the whole MPP sequence, directed efficient secretion of the fused protein. The maximum yield of the fused protein secreted into the medium reached 11.8 mg/l and the calculated rApoE part was 5.3 mg in the fused protein. The excreted fusion protein was glycosylated at the original two sites in the MPP part. The fused protein was gradually degraded in the medium probably by proteases of the host cell, because no such degradation occured in a yeast pep4mutant strain.  相似文献   

14.
By heat treatment killer strains of the type K1 of Saccharomyces cerevisiae that are known to harbour dsRNA plasmids were completely cured, whereas only a small fraction of the clones of the killer type K2 had lost the dsRNA dependent killer character. The K2 killers but not the strains of killer type K1 were easily cured by cycloheximide. Killer strains of Hanseniaspora uvarum were not curable by heat treatment. Curing was successfull with cycloheximide or 5-fluorouracil. Two double-stranded RNA plasmids were detected in the killer strains of H. uvarum. The smaller dsRNA plasmid was absent in the strains that were cured of their killer character by 5-fluorouracil. The killer character of H. uvarum was transferred to S. cerevisiae by spheroplast fusion. The fusion products showing the killer character contained both dsRNA plasmids, obviously the smaller plasmid (M-dsRNA) carries the genes for killer toxin formation. Killer strains of Pichia kluyveri were not curable of their killer character, in these strains no dsRNA plasmids were detected.This paper was kindly supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

15.
As the first step for production of human apolipoprotein E (hApoE) in Saccharomyces cerevisiae, the hApoE cDNA was cloned in Escherichia coli, on the basis of the nucleotide sequence reported previously. When the hApoE cDNA including its pre-sequence-encoding region was expressed under the control of the GAL7 promoter, no protein immunoreactive with anti-hApoE antibody was detected either in the culture medium or inside the cells. For efficient production and secretion of hApoE in S. cerevisiae, the mature hApoE-encoding region was fused to the prepro-sequence region of Rhizomucor rennin (MPR) and to the whole MPR gene including its prepro- and mature-MPR regions. When the fusion gene consisting of the prepro-sequence-encoding region and hApoE regions was expressed in S. cerevisiae, no protein reactive with the anti-hApoE antibody was detected in any fraction of the yeast cells, probably due to rapid degradation of the hApoE protein by yeast proteases. On the othe hand, when hApoE was expressed as a fusion to the whole MPR protein, a considerable amount of the fused protein was secreted into the medium. The preprosequence of MPR was correctly processed from the fused protein in the medium by autocatalytic activity of MPR and by a protease(s) of the host cell. Integration of the fusion gene into the chromosome at a copy number of eight led to secretion of the fused protein in a larger amount than the case when the fusion gene was carried on a 2-µm plasmid with its copy number of a few hundreds, because the 2-µm derived plasmid containing the fusion gene was very unstable in the yeast cells. The secretion level was also improved by changing g the culture conditions. A maximum yield of hApoE part in the secreted fused protein was estimated to be 23.7 mg per liter and the amount of the fused protein was calculated to be 53.0 mg per liter.  相似文献   

16.
In order to provide guidance for selecting suitable heterogenous gene that can efficiently enhance toxicity or broaden insecticidal spectrum of Cry1Ac through fusion expression, two hybrid cry1Acs fused with chitinase-encoding gene tchiB and neurotoxin gene hwtx-1 respectively were constructed and their toxicities were compared. A Bacillus thuringiensis strain harboring the cry1Ac gene in vector pHT315 was used as control. Bioassay revealed that LC50 (after 72 h) of Cry1Ac protoxin was 41.01 μg mL−1, while the hybrid cry1Acs fused with tchiB and hwtx-1 were 4.89 and 23.14 μg mL−1, which were 8.23- and 1.77-fold higher than Cry1Ac protoxin in terms of relative toxicity respectively. Both fusion crystals had a higher toxicity than the original Cry1Ac protein and the toxicity of hybrid cry1Acs fused with hwtx-1 experienced a more significant increase than that fused with tchiB.  相似文献   

17.
The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UV-induced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more final ethanol than the wild-type strain in a synthetic xylose medium containing 2 g/l furfural. However, this mutant was unable to grow in a medium containing 75% liquid fraction of pretreated wheat straw (WSLQ), in which furfural and many other inhibitors were present. Hybrid yeast strains, obtained from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ. Phenotypic and partial molecular analysis indicated that S. passalidarum M7 was the dominant parental contributor to the hybrid. In summary, the hybrids are characterized by desired phenotypes derived from both parents, namely the ability to ferment xylose from S. passalidarum and an increased tolerance to inhibitors from S. cerevisiae ATCC 96581.  相似文献   

18.
The development of simultaneous saccharification and fermentation of starch to ethanol (SSFSE) by genetically modified microbial strains has been studied intensively [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein, Process Biochem. 37 (2002) 1439–1445; G. Birol, Z.Ï. Önsan, B. Kirdar, S.G. Oliver, Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch, Enzyme Microb. Technol. 22 (1998) 672–677; F. Kobayashi, Y. Nakamura, Effect of repressor gene on stability of bioprocess with continuous conversion of starch into ethanol using recombinant yeast, Biochem. Eng. J. 18 (2004) 133–141; F. Kobayashi, Y. Nakamura, Mathematical model of direct ethanol production from starch in immobilized recombinant yeast culture, Biochem. Eng. J. 21 (2004) 93–101; M.M. Altintas, K.Ö. Ülgen, B. Kirdar, Z.Ï. Önsan, S.G. Oliver, Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors, Enzyme Microb. Technol. 31 (2002) 640–647; K.Ö. Ülgen, B. Saygili, Z.Ï. Önsan, B. Kirdar, Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB, Process Biochem. 37 (2002) 1157–1168]. Saccharomyces cerevisiae YPB-G strain secretes a bifunctional fusion protein containing enzymatic activity of the B. subtilis alpha-amylase and of the Aspergillus awamori glucoamylase [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein, Process Biochem. 37 (2002) 1439–1445], and therefore is distinguished in relation to SSFSE step. In this work we have used the experimental data, presented in the paper [M.M. Altintas, B. Kirdar, Z.Ï. Önsan, K.Ö. Ülgen, Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein, Process Biochem. 37 (2002) 1439–1445] to develop two-hierarchic-level unstructured mathematical model describing kinetics of direct bioconversion of starch to ethanol. The first level has modeled enzymatic hydrolysis of starch to glucose by bifunctional protein and the second level includes utilization and bioconversion of glucose to ethanol by yeasts. The second level has unified the enzymatic degradation of starch, and glucose metabolization to ethanol by microorganisms. The response surface analysis was used to develop the rates models. A hybrid genetic algorithm and a decomposition approach were used in the nonlinear parameters identification procedure. The proposed model demonstrated excellent flexibility for different operational conditions of SSFSE process, and can be used successfully to describe microbial physiology of genetically modified strains.  相似文献   

19.
Summary The protoplast fusion technique provides a useful method for improving industrial yeasts and agglutinant agents like polyethylene glycol (PEG) MW 4000 and Ca++ ions are widely used to stimulate the fusion process. Commercial Baker's yeast Saccharomyces cerevisiae and Saccharomyces diastaticus were selected as parental strains for somatic fusion. The Saccharomyces diastaticus carried a spontaneous petite mutation and could not metabolize starch unlike respiratory competent Saccharomyces diastaticus from which it was derived, that readily could.A medium containing soluble starch as a carbon source and 3 % agar was used as fusion products selection medium. Respiratory competent fusion products were capable of using dextrins and starch as carbon sources.  相似文献   

20.
The use of selected yeasts for winemaking has clear advantages over the traditional spontaneous fermentation. The aim of this study was to select an indigenous Saccharomyces cerevisiae yeast isolate in order to develop a regional North Patagonian red wine starter culture. A two-step selection protocol developed according to physiological, technological and ecological criteria based on killer interactions was used. Following this methodology, S. cerevisiae isolate MMf9 was selected among 32 indigenous yeasts previously characterized as belonging to different strains according to molecular patterns and killer biotype. This isolate showed interesting technological and qualitative features including high fermentative power and low volatile acidity production, low foam and low sulphide production, as well as relevant ecological characteristics such as resistance to all indigenous and commercial S. cerevisiae killer strains assayed. Red wines with differential volatile profiles and interesting enological features were obtained at laboratory scale by using this selected indigenous strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号