首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
石灰岩退化生态系统不同恢复阶段土壤酶活性研究   总被引:37,自引:0,他引:37       下载免费PDF全文
研究了石灰岩退化生态系统不同恢复阶段的土壤酶活性.结果表明,石灰岩退化生态系统土壤酶活性在土壤剖面上无明显的递减规律;随着演替进展,土壤酶活性增强,土壤酶活性随植被特征、土壤类型以及酶本身的性质不同而表现各异.整体上石灰岩各阶段土壤酶活性:灌木林>柏木乔林>草本,同一植被类型下石灰岩柏木林>紫色砂岩柏木林.石灰岩退化生态系统土壤酶活之间以及酶活与pH值之间无显著相关性,而含水率和土壤全氮则与土壤酶活性呈显著或极显著相关,说明水分以及养分是石灰岩地区生态恢复的关键性因子.不同类型的土壤酶在同一植被-土壤系统中酶活性表现不一,同一种酶在同一土壤类型而不同的生态恢复阶段酶活性表现不一,同一植被类型下的不同土壤类型中酶活性也有分异.  相似文献   

2.
微生物和土壤酶是陆地生态系统中生物地球化学循环的重要驱动力,深入理解微生物在生态系统中的调节作用以及气候变化过程中微生物量和土壤酶的响应机制是生态学领域关注的重要科学问题.本研究从气候因素角度出发,基于生态化学计量学理论,综述了微生物和土壤酶在陆地生态系统碳氮磷循环中的作用,以及土壤微生物生物量碳氮磷和土壤酶化学计量对气候变化的响应机制,即: 改变微生物代谢速率和酶活性;调整微生物群落结构;调整微生物生物量碳氮磷与土壤酶化学计量特征;改变碳氮磷养分元素利用效率.最后分析当前研究的不足,并提出了该领域亟待解决的科学问题: 综合阐明土壤微生物和土壤酶对气候变化的响应机制;探究土壤微生物和胞外酶养分耦合机理;深入探究土壤微生物量和土壤酶化学计量特征对气候变化的适应对策.  相似文献   

3.
青藏高原区退化高寒草甸植被和土壤特征   总被引:4,自引:0,他引:4  
高寒草甸约占青藏高原草地的46.7%,是我国草地生态系统重要的组成部分。近年来,在气候变化和人为活动的影响下,高寒草甸生态系统退化严重,植被和土壤均呈现出不同的退化趋势。在大空间尺度上表现为草地覆盖度下降,杂草类植被增加,土壤退化甚至沙化;在微观尺度上,退化高寒草甸的土壤粒径、土壤微生物和土壤酶也发生改变。本研究从高寒草甸物种多样性、植物群落结构、植被生物量、土壤物理性质、土壤微生物、土壤酶和土壤养分等方面,分析了高寒草甸生态系统退化过程中植被和土壤的变化特征,提出当前研究中存在的一些不确定性和有待深入研究的问题,为全面了解高寒草甸的退化机制和规律、有效干预高寒草甸生态系统和恢复生态功能提供科学依据。  相似文献   

4.
土壤酶活性作为生态系统养分循环的关键因素, 是反映土壤质量和生态系统功能的重要指标, 但是关于高寒草地生态系统中不同草地类型间酶活性的差异研究还很少。因此, 该研究在藏北高寒草地选择高寒草甸、高寒草原、高寒草甸草原、高寒荒漠草原和高寒荒漠5种草地类型进行野外原位调查和采样, 测定了涉及碳(C)、氮(N)和磷(P)循环的14种酶的活性, 并建立了高寒草地酶活性与土壤微生物和土壤理化性质等环境因子的关系。结果表明: C循环酶(蔗糖酶、纤维素酶、β-葡萄糖苷酶、多酚氧化酶和过氧化物酶)和P循环酶(碱性磷酸酶)在不同高寒草地类型间活性差异明显, N循环酶中仅芳香氨基酶和亚硝酸盐还原酶两种酶在不同高寒草地类型间活性差异明显。同时, C、N和P循环酶之间存在一定的相关关系, 其中, 蔗糖酶和碱性磷酸酶、纤维素酶和α-乙酰氨基葡萄糖苷酶活性显著正相关, 多酚氧化酶与亚硝酸还原酶和β-乙酰氨基葡萄糖苷酶活性显著负相关。在测定的19个环境指标中, 土壤有机质(SOM)含量、革兰氏阴性菌数量、土壤N和P含量计量比、革兰氏阳性菌数量、细菌数量、放线菌数量、全氮含量、真菌数量是影响土壤酶活性的关键因子, 且SOM含量的影响最大(解释量为11.9%)。综上所述, 不同高寒草地类型间C循环酶、P循环酶和两种N循环酶(芳香氨基酶和亚硝酸还原酶)活性差异显著, SOM含量、微生物数量和N含量等是影响高寒草地生态系统土壤酶活性的关键因子。  相似文献   

5.
人工藻结皮对库布齐沙地土壤酶活性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤酶是土壤内存在的具有生物活性的蛋白质,土壤是土壤酶的良好介质,为各种酶类提供酶促条件,且土壤成分与酶通过共价键、离子键或氢键等方式的吸附结合作用,能防止酶的钝化失活。目前已发现的土壤酶约60种,主要来自于土壤微生物,土壤酶的主要作用是参与C、N、P、S等重要营养元素的循环,在植物营养物质的转化中起着重要作用,它与土壤微生物一起共同推动土壤生物化学的全过程,土壤酶活性作为土壤质量的生物活性指标已被广泛接受。我国对土壤酶的研究始于20世纪60年代,20世纪80年代后,随着环境科学的发展,土壤酶研究越来越受重视。国内对农田生态系统的土壤酶研究较多,土壤酶在环境污染治理中的作用也进行了初步探讨,然而土壤酶在荒漠生态系统中的功能及其作用机制的探讨较少,更没有把土壤酶的研究成果用于荒漠生态系统的管理、恢复与重建工作。本实验中,采集库布齐沙地有代表性的流动沙丘和固定沙丘(三年前建立人工植被)1—5cm深度的沙土,首先测定了二者中转化酶、蛋白酶、脲酶以及碱性磷酸酶的活性,然后将荒漠藻接种到流沙表面,研究了人工微藻结皮对四种土壤酶活性的影响。结果表明:与内蒙古高原上广泛分布的栗钙土相比,沙地中的土壤酶活性很低;但固定沙丘中的土壤酶活性显著高于流动沙丘(p〈0.05)。将Microcoleus vaginatusGom。(具鞘微鞘藻)和Phormidium tenue(Menegh.)Gom.(纤细席藻)按0.5μgChl..a/cm2的接种量接种到沙表面时,30d后可形成明显的藻结皮,接种90d后,沙土中转化酶、蛋白酶、脲酶以及碱性磷酸酶的活性分别是对照的1.6—3.6倍、3.1—6.0倍、2.8—10.6倍、29—79倍。目前,荒漠化治理已成为全世界面临的重大课题,本实验研究结果揭示了不同沙地中土壤酶活性的差异,并从土壤酶的角度揭示了人工微藻结皮对土壤的改良作用。该成果对于利用微藻进行荒漠拓殖和荒漠化治理具有一定的指导意义。  相似文献   

6.
林地砍伐开垦对土壤酶活性及养分的影响   总被引:16,自引:1,他引:15  
由土壤微生物生命活动和植物根系产生的土壤酶,不但在土壤物质转化和能量转化过程中起主要的催化作用,而且通过它对进入土壤的多种有机物质和有机残体产生的生命化学转化,使生态系统的各组分间有了功能上的联系,从而保持了土壤生物化学的相对稳衡状态[1]。土壤酶作...  相似文献   

7.
臭氧对生态系统地下过程的影响   总被引:9,自引:2,他引:7  
对流层中高浓度的臭氧是一种严重危害植物的大气污染物,臭氧浓度的升高会对作物、林木等产生一系列的损害。本文综述了大气臭氧浓度升高对生态系统地下过程的影响,包括植物根系、根系分泌物、菌根、土壤-根呼吸、土壤酶以及土壤微生物的影响研究进展;阐述了目前研究中存在的争论以及今后需要研究的领域和方向。  相似文献   

8.
土壤酶是土壤组分中最活跃的有机成分之一,酶活性的高低直接影响到物质循环的速率。日益增强的氮沉降将对生态系统产生深远影响,但其对毛竹林土壤酶活性的影响尚未见报道。通过模拟氮沉降方法,研究了集约经营和粗放经营毛竹林土壤酶(蔗糖酶、纤维素酶、过氧化氢酶和脲酶)活性对4种水平的模拟氮沉降(低氮30 kg·ha–1·a–1、中氮60 kg·ha–1·a–1、高氮90 kg·ha–1·a–1和对照)的初期响应。结果表明:模拟氮沉降显著抑制了两种经营方式下毛竹林土壤蔗糖酶、脲酶和过氧化氢酶的活性;显著增加了粗放经营毛竹林地的纤维素酶活性。经营方式及其与氮沉降的交互作用也显著影响了这4种酶活性。研究结果对于全面认识氮沉降对森林生态系统的生物学效应提供了重要参考。  相似文献   

9.
土壤微生物生态过程与微生物功能基因多样性   总被引:15,自引:1,他引:14  
土壤微生物在陆地生态系统中具有重要的生态功能,包括参与地球化学物质循环、污染物降解、环境剧烈变化的缓冲等.土壤微生物的生态功能与土壤功能联系密切,微生物群落结构与组成变化会直接影响土壤功能的发挥.土壤微生物通过具有生物活性的酶参与一系列的代谢活动,编码酶的功能基因成为微生物功能标记物.近10年中,以功能基因多样性为核心的分子生态学研究迅速发展,为从功能基因角度了解土壤微生物的生态功能提供了一个新的切入点.本文综述了与土壤微生物生态功能相关的功能基因多样性研究进展,并对该领域的发展前景提出展望.  相似文献   

10.
开放式空气CO2浓度增高对土壤线虫影响的研究现状与展望   总被引:5,自引:2,他引:3  
李琪  王朋 《应用生态学报》2002,13(10):1349-1351
大气CO2浓度增高会对生态系统产生一系列的影响,这些影响在某种程度上受到土壤动物区系的调节,本文通过论述大气CO2浓度增高对不同类型土壤中和不同生态系统中土壤线虫产生的影响,阐明了用土壤线虫作为指示生物来研究生态系统变化的意义,并提出了今后针对大气CO2浓度增高这一现象应着重围绕土壤线虫及土壤动物系优先开展的几方面研究,从而更好地指示整个生态系统的变化情况,为有效地管理农田生态系统提供依据。  相似文献   

11.
氮沉降增加对森林凋落物分解酶活性的影响   总被引:7,自引:0,他引:7  
氮沉降增加对森林凋落物分解酶产生的影响在世界范围受到关注。综述了凋落物分解酶的种类、影响酶的因素、酶的生态学意义和土壤酶研究技术的研究发展趋势。根据森林凋落物底物性质的不同,将凋落物分解酶分为纤维素分解酶类、木质素分解酶类、蛋白水解酶类和磷酸酶类。目前普遍认为,氮沉降增加,磷酸酶类活性随之增加,其它三类酶活性未呈现规律性变化。此外,还对氮沉降增加与土壤酶之间关系的研究前景进行了探讨。  相似文献   

12.
Methods have been refined for the assay of phosphatase and arylsulphatase activities in soil, based on the chromogenic p-nitrophenyl ester substrates. Basic assay conditions have been defined, and pH optima and kinetic parameters have been determined. The enzymes follow Michaelis-Menten kinetics; this conclusion is based on three methods of analysis of data determined over a wide range of substrate concentrations. The enzyme activities are very stable to storage of wet soil for up to 4 weeks at soil temperatures and above. For example, phosphatase had a half-life of approximately 2 weeks at 50 degrees C; arylsulphatase was rather less stable. Both enzymes retained 80% of activity after incubation with pronase for 1 week at 25 degrees C. On the basis of this work and studies on other soil enzymes, it is concluded that remarkable stability is a general feature of soil enzymes.  相似文献   

13.
Microbial extracellular enzyme activity (EEA) is critical for the decomposition of organic matter in soils. Generally, EEA represents the limiting step governing soil organic matter mineralization. The high complexity of soil microbial communities and the heterogeneity of soils suggest potentially complex interactions between microorganisms (and their extracellular enzymes), organic matter, and physicochemical factors. Previous studies have reported the existence of maximum soil EEA at high temperatures although microorganisms thriving at high temperature represent a minority of soil microbial communities. To solve this paradox, we attempt to evaluate if soil extracellular enzymes from thermophiles could accumulate in soils. Methodology at this respect is scarce and an adapted protocol is proposed. Herein, the approach is to analyze the persistence of soil microbial extracellular enzymes at different temperatures and under a broad range of water availability. Results suggest that soil high‐temperature EEA presented longer persistence than enzymes with optimum activity at moderate temperature. Water availability influenced enzyme persistence, generally preserving for longer time the extracellular enzymes. These results suggest that high‐temperature extracellular enzymes could be naturally accumulated in soils. Thus, soils could contain a reservoir of enzymes allowing a quick response by soil microorganisms to changing conditions. This study suggests the existence of novel mechanisms of interaction among microorganisms, their enzymes and the soil environment with relevance at local and global levels.  相似文献   

14.
整合分析氮磷添加对土壤酶活性的影响   总被引:6,自引:0,他引:6  
范珍珍  王鑫  王超  白娥 《应用生态学报》2018,29(4):1266-1272
本文通过整合分析(Meta-analysis)的方法分析了氮、磷添加对土壤碳、氮和磷素循环水解酶以及土壤氧化酶活性的影响.结果表明: 氮添加显著增加了碳、氮和磷循环水解酶的活性,增幅分别为6.9%、5.6%和10.7%;与氮添加相比,在氮磷同时添加下,3类土壤酶的活性增加更为显著,增幅分别达13.4%、37.4%和13.3%.然而,对于土壤氧化酶,氮以及氮磷的添加都使其活性降低,分别降低了6.1%和0.4%.不同生态系统类型、氮肥类型、施肥速率和施肥试验时间都对土壤酶活性具有影响.在全球大气氮沉降与磷添加逐渐增加的背景下,土壤微生物活性和酶的变化将会对土壤生物地球化学循环过程和土壤生态系统功能产生重要影响.  相似文献   

15.
灰渣场土壤酶活笥与植被和土壤化学性质的关系   总被引:18,自引:8,他引:10  
通过野外调查和实验分析,研究了芜湖火力发电厂灰渣场土壤蔗糖酶、过氧化氢酶和脲酶活性与土壤污染物及植被的关系。结果表明,灰渣场植被多以单种植物组成的斑块零散布,以草本植物为主,且多为1-2年生。同时,灰渣场3种土壤酶活性和渣场的自然环境条件具有较强的相关性,其中3种酶活性对环境胁迫的敏感性依次为脲酶>蔗糖酶>过氧化氢酶,3种酶活性与环境中因子的相关性整体表现为蔗糖酶>脲酶>过氧化氢酶。由于对环境胁迫为敏感,而且其活性与植被状况和土壤化学性质具有显著或极显著相关性,建议用脲酶活性作为废弃地复垦的一个指示指标。  相似文献   

16.
土壤微生物学特性对土壤健康的指示作用   总被引:70,自引:0,他引:70  
土壤健康是陆地生态系统可持续发展的基础。作者通过概述土壤微生物学特性(土壤微生物群落结构、土壤微生物生物量、土壤酶活性)与土壤质量的关系,阐明了土壤微生物对土壤健康的生物指示功能。研究表明:土壤中细菌、真菌和放线菌的组成及其所占比率在一定程度上反映了土壤的肥力水平:在土壤性质和肥水条件较好的土壤中,细菌所占比率较高。土壤微生物生物量与土壤有机质含量密切相关,而且土壤微生物生物量碳与土壤有机碳的比值(C_(mic):C_(org))和土壤微生物代谢熵(qCO_2)的变化在一定程度上反映了土壤有机碳的利用效率。一般情况下,土壤酶活性高的土壤中,土壤微生物生物量碳、氮含量也高。因此,土壤微生物学特性可以反映土壤质量的变化,并可用作评价土壤健康的生物指标。  相似文献   

17.
森林土壤酶对环境变化的响应研究进展   总被引:14,自引:0,他引:14  
全球气候变化已是不争的事实,对陆地生态系统特别是森林生态系统物质循环将产生显著的影响。土壤酶是森林土壤物质循环的主要限制因素之一,对气候变化的响应近年来受到广泛关注。由于森林土壤酶对全球气候变化的响应研究是预测未来环境变化对森林生态系统过程影响的关键,因此,着重综述了森林土壤酶对环境变化尤其是全球变暖和氮沉降响应方面的研究,并分析了未来研究的主要方向。环境变化会引起土壤p H、水分及其营养成分的变化,而这些变化会反作用于土壤酶的活性和稳定性。森林土壤酶对增温的响应,不仅与酶的种类以及增温的温度范围和持续时间有关,还与土壤类型有关,是多种因子综合作用的结果。森林土壤酶对氮添加的响应与林分类型和土层类型有关,受复合氮的影响更大。建议未来的研究应加强酶的基本性质对环境变化的响应研究,注重林分类型、土层类型导致的差异,强化多因素的交互作用,并进行长期、综合的观测。  相似文献   

18.
Most current models of soil C dynamics predict that climate warming will accelerate soil C mineralization, resulting in a long‐term CO2 release and positive feedback to global warming. However, ecosystem warming experiments show that CO2 loss from warmed soils declines to control levels within a few years. Here, we explore the temperature dependence of enzymatic conversion of polymerized soil organic C (SOC) into assimilable compounds, which is presumed the rate‐limiting step of SOC mineralization. Combining literature review, modelling and enzyme assays, we studied the effect of temperature on activity of enzymes considering their thermal inactivation and catalytic activity. We defined the catalytic power of enzymes (Epower) as the cumulative amount of degraded substrate by one unit of enzyme until its complete inactivation. We show a universal pattern of enzyme's thermodynamic properties: activation energy of catalytic activity (EAcat) < activation energy of thermal inactivation (EAinact). By investing in stable enzymes (high EAinact) having high catalytic activity (low EAcat), microorganisms may maximize the Epower of their enzymes. The counterpart of such EAs’ hierarchical pattern is the higher relative temperature sensitivity of enzyme inactivation than catalysis, resulting in a reduction in Epower under warming. Our findings could explain the decrease with temperature in soil enzyme pools, microbial biomass (MB) and carbon use efficiency (CUE) reported in some warming experiments and studies monitoring the seasonal variation in soil enzymes. They also suggest that a decrease in soil enzyme pools due to their faster inactivation under warming contributes to the observed attenuation of warming effect on soil C mineralization. This testable theory predicts that the ultimate response of SOC degradation to warming can be positive or negative depending on the relative temperature response of Epower and microbial production of enzymes.  相似文献   

19.
Numerous studies reported that inorganic nitrogen (N) deposition strongly affected forest ecosystems. However, organic N is also an important component of atmospheric N deposition. The influence of organic N deposition on soil microbial biomass and extracellular enzymatic activities (EEA) in subtropical forests remains unclear. Coniferous forest (CF) and broad-leaved forest (BF) were chosen from the Zijin Mountain in China. Five forms of organic N (urea, glycine, serine, nonylamine, and a mixture of all four) were used to fertilize the soils in CF and BF every month for 1 year. Soil samples were collected every 2 months. Subsequently, soil microbial biomass and EEA were assayed. Results showed that the microbial biomass and EEA of soils fertilized with urea and amino acids increased significantly, whereas those fertilized with nonylamine and mixed N decreased significantly. Urea and amino acid fertilizations had a more positive influence on EEA of BF than on those of CF. Nonylamine fertilization had a more negative influence on EEA of CF than on those of BF. Organic N fertilization shifted soil microbial biomass away from the excretion of N-degrading enzymes and toward the excretion of C-degrading enzymes. These results suggest that organic N type is an important factor that affects soil microbial biomass, EEA, and their relationship. Organic N deposition may seriously affect soil C and N cycling, as well as carbon dioxide releasing from the soils by influencing microbial activities and biomass. This study thereby provides evidence that soil microorganisms have strong feedback to different forms of organic N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号