首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Ou GS  Chen ZL  Yuan M 《Protoplasma》2002,219(3-4):168-175
Summary. Jasplakinolide is potentially a useful pharmacological tool for the study of actin organization and dynamics in living cells, since it induces actin polymerization in vitro and, unlike phalloidin, is membrane permeative. In the present work, the effect of jasplakinolide on the actin cytoskeleton of living suspension-cultured Nicotiana tabacum ‘Bright Yellow 2’ cells was investigated. Actin filaments in the living cells were disrupted by jasplakinolide. The effect of jasplakionlide on the actin cytoskeleton was concentration and time dependent. When cells were treated with a moderate concentration (150 nM) of jasplakinolide, cortical actin filaments were disrupted preferentially, whereas actin aggregated at the perinuclear region. With concentrations higher than 400 nM and exposure times longer than 30 min, actin filaments in the cell disappeared completely. The effect of jasplakinolide on the actin cytoskeleton was reversible even at high concentration. Actin bundles appeared first in the perinuclear region within 5 min, and the cortical actin array was reestablished in 15 min, suggesting that actin filaments might be organized at this region. Received July 31, 2001 Accepted December 14, 2001  相似文献   

2.
Neisseria meningitidis is a bacterium responsible for severe sepsis and meningitis. Following type IV pilus‐mediated adhesion to endothelial cells, bacteria proliferating on the cellular surface trigger a potent cellular response that enhances the ability of adhering bacteria to resist the mechanical forces generated by the blood flow. This response is characterized by the formation of numerous 100 nm wide membrane protrusions morphologically related to filopodia. Here, a high‐resolution quantitative live‐cell fluorescence microscopy procedure was designed and used to study this process. A farnesylated plasma membrane marker was first detected only a few seconds after bacterial contact, rapidly followed by actin cytoskeleton reorganization and bulk cytoplasm accumulation. The bacterial type IV pili‐associated minor pilin PilV is necessary for the initiation of this cascade. Plasma membrane composition is a key factor as cholesterol depletion with methyl‐β‐cyclodextrin completely blocks the initiation of the cellular response. In contrast membrane deformation does not require the actin cytoskeleton. Strikingly, plasma membrane remodelling undermicrocolonies is also independent of common intracellular signalling pathways as cellular ATP depletion is not inhibitory. This study shows that bacteria‐induced plasma membrane reorganization is a rapid event driven by a direct cross‐talk between type IV pili and the plasma membrane rather than by the activation of an intracellular signalling pathway that would lead to actin remodelling.  相似文献   

3.
This study reports actin phosphorylation and coincident actin cytoskeleton alterations in renal epithelial cell line, LLC-PK1. Serine phosphorylation of actin was first observed in vitro after the cell lysate was incubated with phosphatase inhibitors and ATP. Both the phosphorylated actin and actin kinase activities were found in the cytoskeletal fraction. Actin phosphorylation was later detected in living LLC-PK1 cells after incubation with the phosphatase inhibitor calyculin A. Calyculin A-induced actin phosphorylation was associated with reorganization of the actin cytoskeleton, including net actin depolymerization, loss of cell-cell junction and stress fiber F-actin filaments, and redistribution of F-actin filaments in the periphery of the rounded cells. Actin phosphorylation was abolished by 3-h ATP depletion but not by the non-specific kinase inhibitor staurosporine. These results demonstrate that renal epithelial cells contain kinase/phosphatase activities and actin can be phosphorylated in LLC-PK1 cells. Actin phosphorylation may play an important role in regulating the organization of the actin cytoskeleton in renal epithelium.  相似文献   

4.
Shigella flexneri is an intracellular pathogen that disseminates in colonic epithelial cells through actin‐based motility and formation of membrane protrusions at cell–cell contacts, that project into adjacent cells and resolve into vacuoles, from which the pathogen escapes, thereby achieving cell‐to‐cell spread. Actin nucleation at the bacterial pole relies on the recruitment of the nucleation‐promoting factor N‐WASP, which activates the actin nucleator ARP2/3. In cells, the vast majority of N‐WASP exists as a complex with WIP. The involvement of WIP in N‐WASP‐dependent actin‐based motility of various pathogens, including vaccinia virus and S. flexneri, has been highly controversial. Here, we show that WIPF2 was the only WIP family member expressed in the human colonic epithelial cell line HT‐29, and its depletion impaired S. flexneri dissemination. WIPF2 depletion increased the number of cytosolic bacteria lacking actin tails (non‐motile) and decreased the velocity of motile bacteria. This correlated with a decrease in the recruitment of N‐WASP to the bacterial pole, and among N‐WASP‐positive bacteria, a decrease in actin tail‐positive bacteria, suggesting that WIPF2 is required for N‐WASP recruitment and activation at the bacterial pole. In addition, when motile bacteria formed protrusions, WIPF2 depletion decreased the number of membrane protrusions that successfully resolved into vacuoles.  相似文献   

5.
The vascular endothelium is a cellular interface between the blood and the interstitial space of tissue, which controls the exchange of fluid, solutes and cells by both transcellular and paracellular means. To accomplish the demands on barrier function, the regulation of the endothelium requires quick and adaptive mechanisms. This is, among others, accomplished by actin dynamics that interdependently interact with both the VE-cadherin/catenin complex, the main components of the adherens type junctions in endothelium and the membrane cytoskeleton. Actin filaments in endothelium are components of super-structured protein assemblies that control a variety of dynamic processes such as endo- and exocytosis, shape change, cell–substrate along with cell–cell adhesion and cell motion. In endothelium, actin filaments are components of: (1) contractile actin bundles appearing as stress fibers and junction-associated circumferential actin filaments, (2) actin networks accompanied by endocytotic ruffles, lamellipodia at leading edges of migrating cells and junction-associated intermittent lamellipodia (JAIL) that dynamically maintain junction integrity, (3) cortical actin and (4) the membrane cytoskeleton. All these structures, most probably interact with cell junctions and cell–substrate adhesion sites. Due to the rapid growth in information, we aim to provide a bird’s eye view focusing on actin filaments in endothelium and its functional relevance for entire cell and junction integrity, rather than discussing the detailed molecular mechanism for control of actin dynamics.  相似文献   

6.
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP‐mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL‐37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL‐37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion‐induced LL‐37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol‐rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion‐induced resistance. Our data highlight the importance of Rho GTPase‐dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL‐37.  相似文献   

7.
Molecular bases of epithelial cell invasion by Shigella flexneri   总被引:4,自引:0,他引:4  
The pathogenesis of shigellosis is characterized by the capacity of the causative microorganism, Shigella, to invade the epithelial cells that compose the mucosal surface of the colon in humans. The invasive process encompasses several steps which can be summarized as follows: entry of bacteria into epithelial cells involves signalling pathways that elicit a macropinocitic event. Upon contact with the cell surface, S. flexneri activates a Mxi/Spa secretory apparatus encoded by two operons comprising about 25 genes located on a large virulence plasmid of 220 kb. Through this specialized secretory apparatus, Ipa invasins are secreted, two of which (IpaB, 62 kDa and IpaC, 42 kDa) form a complex which is itself able to activate entry via its interaction with the host cell membrane. Interaction of this molecular complex with the cell surface elicits major rearrangements of the host cell cytoskeleton, essentially the polymerization of actin filaments that form bundles supporting the membrane projections which achieve bacterial entry. Active recruitment of the protooncogene pp 60c-src has been demonstrated at the entry site with consequent phosphorylation of cortactin. Also, the small GTPase Rho is controlling the cascade of signals that allows elongation of actin filaments from initial nucleation foci underneath the cell membrane. The regulatory signals involved as well as the proteins recruited indicate that Shigella induces the formation of an adherence plaque at the cell surface in order to achieve entry. Once intracellular, the bacterium lyses its phagocytic vacuole, escapes into the cytoplasm and starts moving the inducing polar, directed polymerization of actin on its surface, due to the expression of IcsA, a 120 kDa outer membrane protein, which is localized at one pole of the microorganism, following cleavage by SopA, a plasmid-encoded surface protease. In the context of polarized epithelial cells, bacteria then reach the intermediate junction and engage their components, particularly the cadherins, to form a protrusion which is actively internalized by the adjacent cell. Bacteria then lyse the two membranes, reach the cytoplasmic compartment again, and resume actin-driven movement.  相似文献   

8.
Adhesion to cells is the initial step in the infectious cycle of basically all pathogenic bacteria, and to do so, microorganisms have evolved surface molecules that target different cellular receptors. Brucella is an intracellular pathogen that infects a wide range of mammals whose virulence is completely dependent on the capacity to replicate in phagocytes. Although much has been done to elucidate how Brucella multiplies in macrophages, we still do not understand how bacteria invade epithelial cells to perform a replicative cycle or what adhesion molecules are involved in the process. We report the identification in Brucella abortus of a novel adhesin that harbours a bacterial immunoglobulin‐like domain and demonstrate that this protein is involved in the adhesion to polarized epithelial cells such as the Caco‐2 and Madin–Darby canine kidney models targeting the bacteria to the cell–cell interaction membrane. While deletion of the gene significantly reduced adhesion, over‐expression dramatically increased it. Addition of the recombinant protein to cells induced cytoskeleton rearrangements and showed that this adhesin targets proteins of the cell–cell interaction membrane in confluent cultures.  相似文献   

9.
Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single‐celled trichomes that comprise cotton lint fibers. Using mapping‐by‐sequencing, virus‐induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F‐actin in Li1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F‐actin did not uniformly decorate the nuclear envelope. While wild‐type lint fiber trichome cells contained long longitudinal actin cables, the short Li1 fiber cells accumulated disoriented transverse cables. The polymerization‐defective Gly65Val allele in Li1 plants likely disrupts processive elongation of F‐actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth.  相似文献   

10.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   

11.
HBHA is a mycobacterial cell surface protein that mediates adhesion to epithelial cells and that has been implicated in the dissemination of Mycobacterium tuberculosis (Mtb) from the site of primary infection. In this work, we demonstrate that HBHA is able to bind G-actin whereas its shorter form, deprived of the lysine-rich C-terminal region (HBHAΔC), does not bind. Consistently, interaction of actin with HBHA is competitive with heparin binding. Notably, we also observe that HBHA, but not HBHAΔC, clearly hampers G-actin polymerisation into F-actin filaments. Since Mtb escapes from the phagosome into the cytosol of host cells, where it can persist and replicate, HBHA is properly localised on the bacterial surface to regulate the dynamic process of cytoskeleton formation driven by actin polymerisation and depolymerisation.  相似文献   

12.
Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub‐membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus.  相似文献   

13.
At the leading edge of migrating cells, protrusive forces are developed by the assembly of actin filaments organised in a lamellipodial dendritic array at the front and a more distal lamellar linear array. Whether these two arrays are distinct or functionally linked and how they contribute to cell migration is an open issue. Tropomyosin severely inhibits lamellipodium formation and facilitates the lamellar array while enhancing migration, by a mechanism that is not understood. Here we show that the complex in vivo effects of tropomyosin are recapitulated in the reconstituted propulsion of neural Wiskott–Aldrich syndrome protein (N‐WASP)‐functionalised beads, which is based on the sole formation of a dendritic array of actin‐related protein (Arp)2/3‐branched filaments. Actin‐depolymerising factor (ADF) and tropomyosin control the length of the actin tail. By competing with Arp2/3 during filament branching, tropomyosin displays opposite effects on propulsion depending on the surface density of N‐WASP. Tropomyosin binding to the dendritic array is facilitated following filament debranching, causing its enrichment at the rear of the actin tail, like in vivo. These results unveil the mechanism by which tropomyosin generates two morphologically and dynamically segregated actin networks from a single one.  相似文献   

14.
The composite and versatile structure of the cytoskeleton confers complex mechanical properties on cells. Actin filaments sustain the cell membrane and their dynamics insure cell shape changes. For example, the lamellipodium moves by actin polymerization, a mechanism that has been studied using simplified experimental systems. Much less is known about the actin cortex, a shell-like structure underneath the membrane that contracts for cell movement. We have designed an experimental system that mimicks the cell cortex by allowing actin polymerization to nucleate and assemble at the inner membrane of a liposome. Actin shell growth can be triggered inside the liposome, which offers a useful system for a controlled study. The observed actin shell thickness and estimated mesh size of the actin structure are in good agreement with cellular data. Such a system paves the way for a thorough characterization of cortical dynamics and mechanics.  相似文献   

15.
In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod''s tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces.Key Words: actin network, cytoskeleton, Dictyostelium, electron tomography, filopodia, membrane bending  相似文献   

16.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   

17.
用荧光标记的鬼笔碱染色,对离体的黄蝉和姜花的生殖细胞内肌动蛋白微丝的分布进行了研究,结果证明两种植物的生殖细胞内部都存在一个微丝网络,黄蝉生殖细胞的比姜花的简单,微丝束较粗。但姜花生殖细胞的网络微丝束比黄蝉的更紧密地环绕着核。用免疫荧光技术在黄蝉生殖细胞的分裂前期和中期,可以观察到一些微丝束的存在,但在分裂后期和末期细胞内的肌动蛋白则变为颗粒状。  相似文献   

18.
Colonisation of the body surface of healthy subjects by Staphylococcus aureus is mostly harmless because the immune system limits bacterial growth. Under as yet unknown circumstances, however, previously commensal bacteria may become pathogenic by rapid proliferation and density‐dependent generation of virulence factors that negatively affect the surrounding eukaryotic host cells. One of the most problematic virulence factors of Staphylococcus aureus is alpha‐toxin (hemolysin A, Hla). This toxin forms transmembrane pores in the plasma membranes of eukaryotic host cells. The inner diameter of the pore allows ions and small organic molecules to pass from the extracellular space to the cytosol or vice versa. The resulting dissipation of ion gradients as well as loss of energy‐rich molecules like ATP from the cells heavily disturbs host cell functions and signal transduction processes. In epithelial cells, these changes severely affect the polarized phenotype of the epithelial cells by restructuring of the actin cytoskeleton, inducing changes in cell shape and loosening cell‐cell adhesion which ultimately compromises the barrier function of the cell sheet. These effects of alpha‐toxin may provide an explanation why it is particularly Staphylococcus aureus that is involved in the onset of many cases of lung infections (pneumonia).  相似文献   

19.
Bacterial actin homologue MreB is required for cell shape maintenance in most non‐spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction. We show that the cytoplasmic helix‐turn‐helix motif of Thermotoga maritima RodZ directly interacts with monomeric as well as filamentous MreB and present the crystal structure of the complex. In vitro and in vivo analyses of mutant T. maritima and Escherichia coli RodZ validate the structure and reveal the importance of the MreB–RodZ interaction in the ability of cells to propagate as rods. Furthermore, the results elucidate how the bacterial actin cytoskeleton might be anchored to the membrane to help constrain peptidoglycan synthesis in the periplasm.  相似文献   

20.
Serratia grimesii are non‐pathogenic bacteria capable, however, to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin (Bozhokina et al. [2011] Cell. Biol. Int. 35: 111–118). To elucidate how invasion of grimelysin containing bacteria depends on physiological state of host cells, we studied the effect of N‐acetylcysteine (NAC) on susceptibility of HeLa cells to invasion by the wild‐type S. grimesii and recombinant E. coli expressing grimelysin gene. Incubation of HeLa cells with 10 mM NAC resulted in changes of cell morphology and disassembly of actin cytoskeleton that were reversed when NAC was removed from the culture medium. Both in the presence of NAC and upon its removal, the entry of grimelysin producing bacteria increased by a factor of 1.5–2 and 3–3.5 for wild‐type S. grimesii and recombinant E. coli, respectively. This effect does not correlate with cytoskeleton rearrangements but may be due to the NAC‐induced up‐regulation of cell surface receptors playing a role in cell adhesion and cell–cell junctions. A twofold difference in the efficiency of S. grimesii and recombinant E. coli to enter the NAC‐treated cells suggests that the entry of the wild‐type and recombinant bacteria occurs via different receptors which activity is differently affected by NAC. J. Cell. Biochem. 114: 1568–1574, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号