首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
中国农田生态系统土壤呼吸作用研究与展望   总被引:18,自引:0,他引:18       下载免费PDF全文
 农田生态系统是陆地生态系统的重要组成部分,占全球陆地面积的10.5%,其CO2排放量占人为温室气体排放量的21%~25%;由于农田生态系统 受到强烈的人为干扰,因此农田生态系统土壤呼吸作用及其影响因素对准确评估陆地生态系统碳收支具有重要的意义。中国是个有悠久历史的 农业大国,不仅为农田土壤作用的研究提供了天然的实验室, 而且中国农田土壤呼吸作用的研究对全球的碳循环研究及碳收支准确评估具有非 常重要的示范与指导意义。该文综述了近10年来中国农田生态系统土壤呼吸作用研究进展,指出水热因子、作物生物学特性和农业管理活动是 造成中国农田生态系统土壤呼吸作用时空变异 的主要因素;作物根系呼吸作用占土壤作用的比例在13%~77.2%之间,存在极大的不确定性;合 理施肥、秸秆还田和免耕有助于农田生态系统土壤呼吸作用减排和固碳。指出了中国农田生态系统土壤呼吸作用拟重点加强不同区域典型农田 生态系统土壤呼吸作用的比较、空间异质性、影响因素模拟及减排对策等方面的研究。  相似文献   

2.
土壤呼吸作用普适性评估模型构建的设想   总被引:5,自引:0,他引:5  
土壤呼吸作用是陆地碳循环中的重要组成部分, 其评估的准确性直接影响到陆地碳源/汇的准确评估. 对国内外土壤呼吸作用最新研究成果的综述表明, 目前土壤呼吸作用研究主要集中于时间变异性及其影响因子方面, 没有研究同一生态系统内部及不同类型生态系统土壤呼吸作用的空间变异性及其影响因素; 土壤呼吸作用估算模型大多亦只考虑了水热因子的影响, 没有发展一个适于不同的时间与空间尺度的、耦合水热-生物-土壤养分综合影响的土壤呼吸作用普适性模型. 为此, 本研究从影响土壤呼吸作用的时间和空间异质性方面提出了构建土壤呼吸作用普适性评估模型的思想与基本框架, 以及未来的研究重点, 以增进对土壤呼吸作用的理解, 提高土壤呼吸作用估算的准确性.  相似文献   

3.
土壤微生物与根系呼吸作用影响因子分析   总被引:29,自引:1,他引:28  
土壤呼吸作用作为陆地生态系统碳循环的重要组成部分,是当前碳循环研究中的热点问题.对于土壤呼吸作用主要组成部分土壤微生物呼吸作用和根系呼吸作用影响因子的研究,有助于准确地评估全球碳收支.本文从气候、土壤、植被及地表覆被物、大气CO2浓度、人为干扰等方面综述了土壤微生物呼吸作用和根系呼吸作用的主导影响因子,指出这些影响因子不仅直接或间接地影响土壤微生物呼吸作用和根系呼吸作用,而且它们之间相互作用、相互影响,且各影响因子的地位和作用会随时空尺度变化发生相应改变.在此基础上,论文提出了未来土壤呼吸作用的研究重点.  相似文献   

4.
土壤呼吸作用时空动态变化及其影响 机制研究与展望   总被引:12,自引:0,他引:12       下载免费PDF全文
  测定不同陆地生态系统土壤呼吸速率及其时空波动, 阐明其影响因子, 对于全球碳素平衡预算和全球变化潜在效应估计是最为基本的数据。然而, 有关土壤呼吸作用变异性及其影响因素的知识仍存在局限性, 一些关键的过程和机制还有待阐明。该文综述了近年来土壤呼吸作用时空动态规律、影响机制和模拟方面的研究进展, 指出环境因子和生物因子共同驱动着土壤呼吸作用的时间动态变化; 土壤呼吸作用在不同时间尺度上还具有明显的空间异质性, 这主要是植被覆盖、根系分布、主要的环境因素和土壤特性空间分布的异质性造成的。生物因子是影响土壤呼吸作用时空动态变化的主要因素之一。然而, 目前所使用的土壤呼吸作用经验模型通常利用土壤温度、土壤湿度或者两者的交互作用模拟土壤呼吸作用动态变化, 但没有考虑生物因子的影响, 这可能会导致明显的偏差和错误。因此, 为了精确估算土壤呼吸作用, 必须解决土壤呼吸作用小尺度上的空间变异性; 加强不同时间尺度上生物要素对土壤呼吸作用动态变化的影响研究; 除了气候因子外, 土壤呼吸作用经验模型应该纳入生物因子等其它影响因素作为变量, 用以提高模型模拟的正确性和准确性。  相似文献   

5.
 基于2005年玉米(Zea mays)生长季土壤呼吸作用及其影响因子的动态观测资料,分析了玉米地土壤呼吸作用的日和季动态及其对土壤温度和生物因子协同作用的响应。结果表明 ,玉米地土壤呼吸作用的日变化为不对称的单峰型,其最小值和最大值分别出现在6∶00~7∶00和13∶00左右;玉米生长季中,土壤呼吸速率波动较大,其均值为3.16 μmolCO2·m-2·s-1,最大值为4.87μmolCO2·m-2·s-1,出现在7月28 日,最小值为1.32μmolCO2·m-2·s-1,出现在5月4日。在土壤呼吸作用日变化中,土壤呼吸速率(SR)与10 cm深度土壤温度(T)呈显著的线性关系:SR=αT+β。在整个生长季节中,玉米净初级生产力(NPP)与直线斜率(α)呈显著正相关,生物量(B)也明显影响直线的截距(β)。基于此,建立了玉米地土壤呼吸作用动态模型SR=(aNPP+b)T+cB2+dB+e。土壤呼吸作用季节变化的大部分(97%)可以由土壤温度、NPP和生物量的季节变化来解释。当仅考虑土壤温度对土壤呼吸作用的影响时,指数方程会过大或过小地估计了土壤呼吸强度。该文的结果强调了生物因子在土壤呼吸作用季节变化中的重要作用,同时指出土壤呼吸作用模型不仅要考虑土壤温度的影响,在生物因子影响土壤呼吸作用的温度敏感性时,还应该把生物因子纳入模型。  相似文献   

6.
寒温针叶林土壤呼吸作用的时空特征   总被引:2,自引:0,他引:2  
利用Li-6400便携式CO2分析系统对寒温针叶林土壤呼吸作用观测数据分析表明,土壤呼吸作用日、季动态均呈单峰型变化,日最大值出现在16:00左右,与5 cm土壤温度日动态相似,滞后于气温日动态变化;月最大值出现在8月份,2006年和2007年分别为8.19 和6.89 μmol CO2 m-2 s-1。日、季土壤呼吸作用与土壤温度的相关性均好于气温。土壤呼吸作用存在较大的空间变异性,一天内3:00 am、7:00 am和11:00 am的土壤呼吸作用变异系数分别为35.5%、27.6%和23.0%,根系和凋落物与土壤呼吸作用表现出相似的空间变异性,其中细根与土壤呼吸作用的相关性最好。  相似文献   

7.
中国草原土壤呼吸作用研究进展   总被引:13,自引:1,他引:12       下载免费PDF全文
中国草原面积约占国土面积的40%,且大都位于生态脆弱区,对气候和环境变化十分敏感,在未来大气CO2调控中有着重要的作用。为增进对中国草原土壤呼吸作用的理解,该文综述了近10年来中国草原土壤呼吸作用的最新研究进展,指出中国草原土壤呼吸作用的研究主要集中在东北平原、内蒙古高原和青藏高原。草原土壤呼吸作用日动态的主导控制因子是温度,季节动态的主导控制因子可以是温度、水分或二者的交互作用,取决于研究地点的限制性环境因子,而年际动态的主导控制因子为水分。草原土壤呼吸作用还存在着巨大的空间变异,年降水和土壤全氮含量是不同类型草原土壤呼吸作用空间异质性的主导控制因子。土壤呼吸作用对全球变化的响应比较复杂,取决于各因子之间相互影响的贡献。现有的土壤呼吸作用模型大多只考虑了水热因子,很少包含土壤因子和生物因子及其协同作用的影响。在此基础上,指出未来中国草原土壤呼吸作用拟加强的研究重点:1)温带荒漠草原土壤呼吸作用研究;2)非生长季土壤呼吸作用研究;3)多时空尺度草原土壤呼吸作用的比较研究;4)草原土壤呼吸作用过程模拟研究;5)草原土壤呼吸作用的遥感监测评估研究。  相似文献   

8.
土壤呼吸作用的空间异质性对土壤碳收支的准确评估起重要作用.通过对新疆伊犁地区3个生长阶段杨树人工林的土壤呼吸速率、土壤环境因子和细根生物量的测定,分析了土壤呼吸速率的空间变异及其影响因素.结果表明:在整个生长季,土壤呼吸空间变异系数(CV)为5.7% ~42.6%.2、7和12年生杨树人工林的平均土壤呼吸速率分别为5.74、5.10和4.71 μmol·m-2·s-1,空间变异系数分别为28.8%、22.4%和19.6%,差异显著.逐步回归分析表明,5 cm土壤温度、表层土壤氮含量及细根生物量是决定土壤呼吸空间异质性的主要因子,可以共同解释86%的土壤呼吸变异.此外,由于测点距树干的位置不同,使土壤温度和细根生物量等因子发生了改变,也会导致土壤呼吸的空间变异.在估算杨树人工林土壤碳排放量时,应考虑其在不同生长阶段土壤呼吸速率的空间变异.  相似文献   

9.
 利用红外辐射增温装置模拟短期持续增温和降水增加交互作用对内蒙古荒漠草原土壤呼吸作用的影响, 结果表明: 土壤含水量对月土壤呼吸的影响显著大于土壤温度增加的影响, 生长旺季的月土壤呼吸显著大于生长末季; 土壤温度和水分增加都显著影响日土壤呼吸, 但二者的交互作用对土壤呼吸无显著影响。荒漠草原7?8月平均土壤呼吸速率为1.35 μmol CO2·m–2·s–1, 7月份为2.08 μmol CO2·m–2·s–1, 8月份为0.63 μmol CO2·m–2·s–1。土壤呼吸与地下各层根系生物量呈幂函数关系, 0?10 cm土层的根系生物量对土壤呼吸的解释率(79.2%)明显高于10?20 cm土层的解释率(31.6%)。0–10 cm土层的根系生物量是根系生物量的主体, 根系生物量对土壤呼吸的影响具有层次性。在未来全球变暖和降水格局变化的情景下, 荒漠草原土壤水分含量是影响生物量的主导环境因子, 而根系生物量的差异是造成土壤呼吸异质性的主要生物因素, 土壤含水量可通过影响根系生物量控制土壤呼吸的异质性。  相似文献   

10.
太阳辐射对玉米农田土壤呼吸作用的影响   总被引:1,自引:0,他引:1  
孙敬松  周广胜  韩广轩 《生态学报》2010,30(21):5925-5932
水热因子通常被认为是影响土壤呼吸作用的主导因子。对2004-2005年东北地区玉米农田土壤呼吸作用的观测资料分析表明:太阳辐射对土壤呼吸作用有促进作用,使得白天的土壤呼吸速率高于夜间,并导致土壤呼吸作用与土壤温度的关系发生变化。太阳总辐射对玉米(Zea mays L.)生长后期的土壤呼吸作用具有显著影响(9月7日:R2=0.80,P0.0001;9月29日:R2=0.82,P0.0001)。地上生物量和叶面积指数制约着太阳总辐射对土壤呼吸作用的贡献,可解释太阳总辐射与土壤呼吸作用关系变异的83.5%。在玉米生长初期,散射辐射间接地促进了土壤呼吸作用,但随着叶面积指数的增加,散射辐射的透射作用减弱,使得直射辐射对土壤呼吸作用的影响超过散射辐射;进入玉米生长后期,由于叶子枯黄,叶面积指数减小,散射辐射又对土壤呼吸起到促进作用。  相似文献   

11.
三源区分土壤呼吸组分研究   总被引:1,自引:1,他引:0  
宋文琛  同小娟  李俊  张劲松 《生态学报》2017,37(22):7387-7396
三源区分土壤呼吸组分是指将土壤呼吸区分为纯根呼吸、根际微生物呼吸和土壤有机质呼吸3个部分。土壤有机质呼吸、纯根呼吸和根际微生物呼吸是3种不同的生物学过程,这3种呼吸对环境变化具有不同的响应机制。区分土壤呼吸中由根系引起的自养和异养呼吸组分的研究对定量评价陆地生态系统碳平衡具有重要的意义。论述了三源区分土壤呼吸组分的意义、方法和应用,分析了不同条件下土壤呼吸组分区分的研究结果。实验室纯根和根际微生物呼吸占根源呼吸比重约为45%和55%;野外条件下约为60%和40%。最后对本研究未来的发展方向进行了展望。  相似文献   

12.
13.
中国森林土壤呼吸模式   总被引:20,自引:4,他引:16  
通过收集国内62个森林样地的土壤呼吸及相关因子数据,分析中国森林土壤呼吸模式.结果表明,中国森林土壤呼吸年通量与年均气温、年均降水量、年凋落物量和年地上净生产力均呈显著的线性正相关,土壤呼吸的Q10则与年均气温和年均降水量均呈显著的负相关.根系呼吸、枯枝落叶层呼吸与土壤呼吸间均呈显著线性正相关;土壤异养呼吸和枯枝落叶层呼吸与年凋落物量呈显著正相关;土壤异养呼吸与自养呼吸间呈显著的线性正相关.根系呼吸、枯枝落叶层呼吸、矿质土壤呼吸占土壤呼吸的比例均值分别为34.7%、20.2%和50.2%.矿质土壤呼吸所占比例与气温和降水量呈显著负相关,而异养呼吸所占比例则与降水量呈显著负相关.根系呼吸所占比例与根系呼吸之间呈渐近线关系(渐近值为45.9%).  相似文献   

14.
南方型杨树人工林土壤呼吸及其组分分析   总被引:3,自引:0,他引:3  
唐罗忠  葛晓敏  吴麟  田野  魏勇 《生态学报》2012,32(22):7000-7008
采用开沟隔离法,利用LI-8100型土壤呼吸测定系统,对15年生的南方型杨树(Populus deltoides)人工林土壤呼吸进行了研究,并试图区分根系呼吸和土壤微生物呼吸。结果表明,开沟隔离处理后的10个月内,由于土壤中被截断根系具有自养呼吸和分解作用,土壤呼吸中的根系呼吸与微生物呼吸尚难以区分。尽管如此,研究表明15年生杨树人工林的土壤总呼吸通量为9.74 tC.hm-.2a-1,其中,枯枝落叶等土壤表层凋落物分解所释放的碳通量是2.63 tC.hm-.2a-1,占总量的27.0%;林木根系呼吸与土壤微生物呼吸通量的和为7.11 tC.hm-.2a-1,占总量的73.0%。土壤各组分呼吸速率与10 cm深处的土壤温度之间存在着显著的指数函数关系。不同直径的杨树根系被截断后的活力变化有所不同,根系越粗,存活时间越长。  相似文献   

15.
The spatial and temporal variations of soil respiration were studied from May 2004 to June 2005 in a C3/C4 mixed grassland of Japan. The linear regression relationship between soil respiration and root biomass was used to determine the contribution of root respiration to soil respiration. The highest soil respiration rate of 11-54 Μmol m-2 s-1 was found in August 2004 and the lowest soil respiration rate of 4.99 Μmol m-2 s-1 was found in April 2005. Within-site variation was smaller than seasonal change in soil respiration. Root biomass varied from 0.71 kg m-2 in August 2004 to 102 in May 2005. Within-site variation in root biomass was larger than seasonal variation. Root respiration rate was highest in August 2004 (5.7 Μmol m-2 s-1) and lowest in October 2004 (1.7 Μmol m-2 s-1). Microbial respiration rate was highest in August 2004 (5.8 Μmol m-2 s-1) and lowest in April 2005 (2.59 Μmol m-2 s-1). We estimated that the contribution of root respiration to soil respiration ranged from 31% in October to 51% in August of 2004, and from 45% to 49% from April to June 2005.  相似文献   

16.
东北东部森林生态系统土壤呼吸组分的分离量化   总被引:21,自引:4,他引:17  
杨金艳  王传宽 《生态学报》2006,26(6):1640-1647
对森林生态系统的土壤呼吸组分进行分离和量化,确定不同组分CO2释放速率的控制因子,是估测局域和区域森林生态系统碳平衡研究中必不可少的内容。采用挖壕法和红外气体分析法测定无根和有根样地的土壤表面CO2通量(RS),确定东北东部6种典型森林生态系统RS中异养呼吸(RH)和根系自养呼吸(RA)的贡献量及其影响因子。具体研究目标包括:(1)量化各种生态系统的RH及其与主要环境影响因子的关系;(2)量化各种生态系统RS中根系呼吸贡献率(RC)的季节动态;(3)比较6种森林生态系统RH和RA的年通量。土壤温度、土壤含水量及其交互作用显著地影响森林生态系统的RH(R2=0.465~0.788),但其影响程度因森林生态系统类型而异。硬阔叶林和落叶松人工林的RH主要受土壤温度控制,其他生态系统RH受土壤温度和含水量的联合影响。各个森林生态系统类型的RC变化范围依次为:硬阔叶林32.40%~51.44%;杨桦林39.72%~46.65%;杂木林17.94%~47.74%;蒙古栎林34.31%~37.36%;红松人工林33.78%~37.02%;落叶松人工林14.39%~35.75%。每个生态系统类型RH年通量都显著高于RA年通量,其变化范围分别为337~540 gC.m-2.a-1和88~331 gC.m-2.a-1。不同生态系统间的RH和RA也存在着显著性差异。  相似文献   

17.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

18.
Yang J Y  Wang C K 《农业工程》2006,26(6):1640-1646
Quantifying soil respiration components and their relations to environmental controls are essential to estimate both local and regional carbon (C) budgets of forest ecosystems. In this study, we used the trenching-plot and infrared gas exchange analyzer approaches to determine heterotrophic (RH) and autotrophic respiration (RA) in the soil surface CO2 flux for six major temperate forest ecosystems in northeastern China. The ecosystems were: Mongolian oak forest (dominated by Quercus mongolica), aspen-birch forest (dominated by Populous davidiana and Betula platyphylla), mixed wood forest (composed of P. davidiana, B. platyphylla, Fraxinus mandshurica, Tilia amurensis, Acer amono, etc.), hardwood forest (dominated by F. mandshurica, Juglans mandshurica, and Phellodendron amurense), Korean pine (Pinus koraiensis), and Dahurian larch (Larix gmelinii) plantations, representing the typical secondary forest ecosystems in this region. Our specific objectives were to: (1) quantify RH and its relationship with the environmental factors of the forest ecosystems, (2) characterize seasonal dynamics in the contribution of root respiration to total soil surface CO2 flux (RC), and (3) compare annual CO2 fluxes from RH and RA among the six forest ecosystems. Soil temperature, water content, and their interactions significantly affected RH in the ecosystems and accounted for 46.5%–78.8% variations in RH. However, the environmental controlling factors of RH varied with ecosystem types: soil temperature in hardwood and Dahurian larch forest ecosystems, soil temperature, and water content in the others. The RC for hardwood, poplar-birch, mixed wood, Mongolian oak, Korean pine, and Dahurian larch forest ecosystems varied between 32.40%–51.44%, 39.72%–46.65%, 17.94%–47.74%, 34.31%–37.36%, 33.78%–37.02%, and 14.39%–35.75%, respectively. The annual CO2 fluxes from RH were significantly greater than those from RA for all the ecosystems, ranging from 337–540 g Cm-2a-1 and 88‐331 gCm-2a-1 for RH and RA, respectively. The annual CO2 fluxes from RH and RA differed significantly among the six forest ecosystems.  相似文献   

19.
CO2 flux from the soil was measured in situ under oil palms in southern Benin. The experimental design took into account the spatial variability of the root density, the organic matter in the soil-palm agrosystem and the effect of factors such as the soil temperature and moisture.Measurements of CO2 release in situ, and a comparison with the results obtained in the laboratory from the same soil free of roots, provided an estimation of the roots contribution to the total CO2 flux. The instantaneous values for total release in situ were between 3.2 and 10.0 mol CO2 m-2 s-1. For frond pile zones rich in organic matter, and around oil palm trunks, root respiration accounted for 30% of the efflux when the soil was at field capacity and 80% when the soil was dry with a pF close to 4.2. This proportion remained constant in interrow zones at around 75%, irrespective of soil moisture.Subsequently carbon allocation to the roots was determined. Total CO2 release over a year was 57 Mg of CO2 ha-1 yr-1 (around 1610 g of C per m2 per year), and carbon allocation to the roots was approximately 53 Mg of CO2 ha-1 yr-1 of which approximately 13 Mg CO2 ha-1 yr-1 (25%) was devoted to turn-over and 40 Mg CO2 ha-1 yr-1 (75%) to respiration.  相似文献   

20.
马尾松林土壤呼吸组分对不同营林措施的响应   总被引:3,自引:0,他引:3  
雷蕾  肖文发  曾立雄  黄志霖  谭本旺 《生态学报》2016,36(17):5360-5370
针对不同营林措施(对照、除灌、采伐1(15%)、采伐2(70%)后的三峡库区马尾松飞播林,采用LI-8100对其土壤呼吸组分的呼吸速率和土壤温度、湿度进行为期1年的连续观测分析表明,不同营林措施对土壤呼吸组分的影响不同。1)观测期内,各营林措施下凋落物层呼吸速率差异并不显著,对照、除灌、采伐1、采伐2的根呼吸速率均值分别为:1.00、0.83、0.86、1.11μmolCO_2m~(-2)s~(-1);采伐处理下矿质土壤呼吸显著高于对照和除灌(P0.05);2)与对照相比,营林措施并未显著改变凋落物呼吸对于土壤总呼吸的贡献率(18.78%-23.70%),但降低了根呼吸的贡献率,其中以采伐1最为显著(P0.05);除灌的矿质土壤呼吸贡献率(37.00%)与对照(38.32%)相近,而采伐1(45.63%)和采伐2(43.07%)均显著增加了矿质土壤呼吸的贡献率,矿质土壤呼吸的变化是造成采伐措施下土壤呼吸变化的主要土壤呼吸组分;3)营林后仅采伐2措施下土壤温湿度显著高于对照,土壤温湿度双因子模型较单因子模型能更好的解释土壤呼吸组分变化,但仅能解释其部分变化(4.6%-59.3%),仍需对营林后其他相关因子进行深入的综合研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号