首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of calcitonin gene-related peptide (CGRP) on the cholinergically mediated twitch contraction in longitudinal muscle strips of the small intestine (duodenum, jejunum, ileum) of guinea-pig, pig and man was investigated. Independently of the anatomical region, CGRP inhibited the twitch response in the different specimens of all three species by about 40% with similar IC50 values (1.5-2.4 nmol/l). Only in the guinea-pig small intestine CGRP induced a contraction of the smooth muscle which was sensitive to scopolamine and tetrodotoxin. The electrically evoked [3H]acetylcholine release from jejunal longitudinal muscle strips with myenteric plexus attached of the guinea-pig, which were incubated with [3H]choline, was concentration-dependently inhibited by CGRP. A direct relaxant effect of CGRP on smooth muscle tone of carbachol precontracted preparations was only observed in specimens of the guinea-pig. In conclusion, presynaptic inhibitory CGRP receptors on cholinergic neurones modulate the release of acetylcholine in different parts of the small intestine.  相似文献   

2.
Summary A quantitative ultrastructural study was made of the neuntes forming the deep muscular and circular muscle plexuses of the guinea-pig small intestine following microsurgical lesions designed to interrupt intrinsic and extrinsic nerve pathways within the intestinal wall. Removal of a collar of longitudinal muscle with attached myenteric plexus from the circumference of a segment of small intestine resulted in the subsequent disappearance of 99.3% of neurites in the underlying circular muscle. The few surviving neurites in the deep muscular plexus and circular muscle disappeared completely from lesioned segments that were, in addition, extrinsically denervated surgically. These results indicate that the majority of nerve fibres in the deep muscular and circular muscle plexuses of the guinea-pig small intestine is intrinsic to the intestine and originates from nerve cell bodies located in the overlying myenteric plexus. At the light-microscopic level, nerve bundles were traced from the myenteric plexus to the circular muscle.  相似文献   

3.
The adenosine derivative, 2'3'-di-O-nitro-(5'-N-ethylcarboxamido)adenosine (DINECA), caused relaxation in several isolated smooth muscle preparations including guinea pig taenia caeci, beef coronary arteries, and rabbit small intestine. In rabbit small intestine the response profile of DINECA action differed from that of established adenosine receptor agonists and, in contrast with the latter, its relaxant effect was only partially reversed by the antagonist 8-p-sulfophenyltheophylline. Concentration-response curves to 5'-(N-ethylcarboxamido)adenosine (NECA), but not those to DINECA, were significantly shifted to the right by 100 microM of 8-sulfophenyltheophylline. Tissues exposed previously to DINECA became refractory to adenosine, an effect not observed with tissues exposed to NECA, suggesting that DINECA became bound to adenosine receptors. Adenylate cyclase from neuroblastoma cells, containing Ra-type adenosine receptors, was stimulated by 2-chloroadenosine and NECA but not by DINECA. The results suggest that most of the smooth muscle relaxant actions of DINECA are not due to interaction with adenosine receptors but are probably due to its function as a nitrate. However, DINECA appears to interact with adenosine receptors, causing long lasting inhibition of adenosine action in rabbit intestine. Such actions may contribute to the overall response to DINECA application in vivo, although lowering of blood pressure due to the high reactivity of the vasculature to nitrates may be the initial and major effect.  相似文献   

4.
Calcitonin-gene-related-peptide (CGRP)-like immunoreactivity was localized in nerve fibres, neuronal somata and in mucosal endocrine cells of the human small intestine. Immunoreactive enteric neurons were more numerous in the submucous plexuses than in the myenteric plexus. Morphologically, they predominantly had the appearance of type II neurons. The majority of the CGRP-like immunoreactive nerve fibres ran within the ganglionic nerve plexuses. Only a small proportion could be observed in the lamina propria, the lamina muscularis mucosae, or the circular and longitudinal outer smooth muscle layer. These findings suggest that within the wall of the human small intestine neuronal CGRP of either extrinsic or intrinsic origin exerts its effect chiefly on other enteric neurons, and might be indirectly involved in the regulatory functions of the human small intestine.  相似文献   

5.
S Ahmad  E E Daniel 《Peptides》1991,12(3):623-629
We have previously characterized the neurotensin receptors on the circular smooth muscle (CM) of the canine small intestine (1). In the present studies, using radioligand binding technique, neurotensin receptors were localized on the membranes from deep muscular (DMP) and the submucous plexus while no binding was observed on either the longitudinal smooth muscle or myenteric plexus membranes. The high affinity binding sites (Kd 0.1-0.2 nM) on DMP membranes were similar to those on CM; the low affinity component was of much lower affinity (Kd approximately 40 nM). DMP had 4-6 times higher density of binding sites than the CM. The recognition properties of DMP receptors were similar to those on the CM and reduced sulfhydryl groups were required for the binding activity. The action of neurotensin on the contractility of the canine small intestine, therefore, appears to be through a direct action on the circular smooth muscle and through the prejunctional action on the DMP neurons through distinct receptors. Thiol groups in the neurotensin receptors may be important for the receptor function.  相似文献   

6.
The role of Ca2+ in the contractility of rabbit small intestine in vitro.   总被引:3,自引:0,他引:3  
This study evaluated the role of Ca2+ in spontaneous and ACh- and KCl-induced contractions in longitudinal and circular smooth muscle from rabbit small intestine in vitro. In the first experiment, the amplitude, frequency and tone of spontaneous contractions in longitudinal and circular smooth muscle of small intestine were determined and, in the second experiment, the ACh- and KCl-induced responses of longitudinal and circular smooth muscle were measured. Atropine and guanethidine reduced the amplitude and tone of contractions in longitudinal and circular muscle, but reduced the frequency of contractions in circular muscle, only. TTX attenuated the amplitude of contractions and decreased the tone of contractions in longitudinal muscle, but increased the tone in circular muscle. Ca2+-free solutions, verapamil, nifedipine and caffeine diminished the three parameters of spontaneous contractions. Thapsigargin and cyclopiazonic acid increased the amplitude and tone of contractions in ileum longitudinal muscle, only, and cyclopiazonic acid increased the amplitude of contractions in circular muscle. Ca2+-free solutions, verapamil, nifedipine, thapsigargin, cyclopiazonic acid, and caffeine diminished ACh- and KCl-induced contractions. Those results suggest that extracellular Ca2+ plays a role in spontaneous contractions, and extracellular and intracellular Ca2+ participate in the ACh- and KCl-induced contractions of rabbit small intestine.  相似文献   

7.
The aims of this study were to quantify the change in resting membrane potential (RMP) across the thickness of the circular muscle layer in the mouse and human small intestine and to determine whether the gradient in RMP is dependent on the endogenous production of carbon monoxide (CO). Conventional sharp glass microelectrodes were used to record the RMPs of circular smooth muscle cells at different depths in the human small intestine and in wild-type, HO2-KO, and W/W(V) mutant mouse small intestine. In the wild-type mouse and human intestine, the RMP of circular smooth muscle cells near the myenteric plexus was -65.3 +/- 2 mV and -58.4 +/- 2 mV, respectively, and -60.1 +/- 2 mV and -49.1 +/- 1 mV, respectively, in circular smooth muscle cells at the submucosal border. Oxyhemoglobin (20 microM), a trapping agent for CO, and chromium mesoporphyrin IX, an inhibitor of heme oxygenase, abolished the transwall gradient. The RMP gradients in mouse and human small intestine were not altered by N(G)-nitro-l-arginine (200 microM). No transwall RMP gradient was found in HO2-KO mice and W/W(V) mutant mice. TTX (1 microM) and 1H-[1,2,4-]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM) had no effect on the RMP gradient. These data suggest that the gradient in RMP across the thickness of the circular muscle layer of mouse and human small intestine is CO dependent.  相似文献   

8.
Current literature concerning smooth muscle blood vessels has shown versican as the main proteoglycan (PG) component of the matrix. To show whether smooth muscle matrix has the same PG distribution when present in organs, other than the blood vessels, the inner circular smooth muscle layer of the small intestine was obtained by dissection as a highly purified tissue and analyzed by biochemical and cytochemical methods. The smooth muscle layer PGs were extracted from dog small intestine with 4 M guanidine-HCl in the presence of proteinase inhibitors, purified by charge equilibrium, isolated by equilibrium CsCl density gradients, and analyzed in terms of anion exchange, size, and glycosaminoglycan (GAG) distribution. Proteoheparan sulfate itself represented 91.5% of the PGs present in this tissue. The remainder was proteodermatan sulfate. Cytochemical analyses using the cationic dye cuprolinic blue associated with enzymatic treatments with chondroitinases ABC and heparitinase III showed the arrangement and identification of PGs in basal lamina and intramuscular connective tissues. The PGs in the basal lamina were proteoheparan sulfate, and those associated with collagen fibrils in the endomysium and perimysium were rich in dermatan sulfate. In contrast to the blood vessels, inner circular muscle smooth tissue in intestine has, as the main PG, perlecan.  相似文献   

9.
Moderate concentrations of the sensory stimulant drug capsaicin caused relaxation in human and animal intestinal circular muscle preparations (guinea-pig proximal, mouse distal colon, human small intestine and appendix) in vitro. With the exception of the guinea-pig colon, the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 10(-4) M) strongly inhibited the relaxant effect of capsaicin. Tetrodotoxin, an inhibitor of voltage-sensitive Na+ channels failed to significantly reduce the inhibitory effect of capsaicin in the guinea-pig colon, human ileum and appendix; it caused an approximately 50% reduction in the mouse colon. The relaxant effect of capsaicin was strongly reduced in colonic preparations from transient receptor potential vanilloid type (TRPV1) receptor knockout mice as compared to their wildtype controls. It is concluded that nitric oxide, possibly of sensory origin, is involved in the relaxant action of capsaicin in the circular muscle of the mouse and human intestine.  相似文献   

10.
11.
The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.  相似文献   

12.
We examined the direct effect of motilin on longitudinal and circular smooth muscle cells isolated from the guinea pig small intestine. In addition, the effects of 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8, an inhibitor of intracellular Ca(2+)-release), verapamil (a voltage-dependent Ca(2+)-channel blocker), and removal of extracellular Ca2+ were investigated to evaluate the role of intracellular Ca2+ stores and extracellular Ca2+ on the muscle contraction induced by motilin. The effects of atropine (a muscarinic receptor antagonist), spantide (a substance P receptor antagonist) and loxiglumide (a CCK-receptor antagonist) were also examined to determine whether the motilin-induced contraction was independent of those receptors. Motilin induced a contraction of the longitudinal and circular smooth muscle cells in a dose-dependent manner with the maximal effect attained after 30 seconds of incubation. The ED50 values were 0.3 nM and 0.05 nM, respectively. TMB-8 suppressed completely the motilin-induced contraction of both types of smooth muscle cells. Verapamil had only a slight suppressive effect. Removal of extracellular Ca2+ did not have any significant influence on motilin-induced contraction. The contractile response to motilin was not affected by atropine, spantide or loxiglumide. Our findings showed that:1) motilin has a direct contractile effect on both longitudinal and circular smooth muscle cells; 2) this contractile effect is not evoked via muscarinic, substance P or CCK receptors, and 3) the intracellular release of Ca2+ plays an important role in the contractile response to motilin on both types of smooth muscle cells.  相似文献   

13.
The actions of peptide YY (PYY) were studied in longitudinal organ-bath preparations of the guinea pig intestine. PYY induced concentration-dependent (10(-9)-5 x 10(-8) M) relaxations of tissue from the duodenum, jejunum, ileum, and colon. These responses were unaffected by adrenergic blockade and atropine treatment but could be prevented by tetrodotoxin. The pharmacology of PYY actions in segments of the small and large intestine indicated the involvement of intrinsic nonadrenergic, noncholinergic inhibitory neurones in the relaxation response to this peptide. All tissues could be made tachyphylactic to PYY without affecting their ability to respond to the direct acting muscle relaxants ATP or papaverine. Moreover, nicotinic ganglion stimulated relaxations and cholinergic nerve-mediated contractions were also unaffected. These results show applied PYY to have potent neurogenic actions in the guinea pig intestine with some similarities to PYY actions in the rat intestine.  相似文献   

14.
Cellular networks of pacemaker activity in intestinal movements are still a matter of debate. Because gap-junctional intercellular communication in the intestinal wall may provide important clues for understanding regulatory mechanisms of intestinal movements, we have attempted to clarify the distribution patterns of three types of gap junction proteins. Using antibodies for connexin40, connexin43, connexin45, smooth muscle actin, and vimentin, immunocytochemical observations were made with the confocal laser scanning microscope on cryosections of fresh-frozen small intestine and colon of the dog and rat. Connexin 45 was localized along the deep muscular plexus of the small intestine in both dog and rat. Double labeling studies revealed that connexin45 overlapped with vimentin –, but not actin-positive areas, indicating the fibroblast-like nature of the cells, rather than their being smooth muscle-like. Connexin43 immunoreactivity appeared along the smooth muscle cell surface in the outer circular layer of the small intestine of both animals. Connexin 40 immunoreactivity was not observed in the muscle layer other than in the wall of large blood vessels. It is suggested that connexin45-expressing cells along the deep muscular plexus of dog and rat small intestine are likely to act as a constituent of a pacemaker system, which may include a conductive system, by forming a cellular network operating via specific types of gap junctions.  相似文献   

15.
胚胎小肠Cajal细胞的发育研究   总被引:5,自引:1,他引:4  
目的研究人胚胎小肠cajal细胞的发育变化规律。方法采用全层铺片结合切片的免疫细胞化学技术。结果Cajal细胞呈酪氨酸激酶受体(Kit)和波形蛋白(vinlentin)免疫反应阳性。在胚胎发育早期,cajal细胞较少,为单层,稀疏分布于肌间神经丛周围,细胞为梭形,可见两个短而小的突起,未见分支;随着胎龄的增加,Cajal细胞数量增多,胞体增大,突起伸长,并出现分支。此时,肌间神经丛周围的Cajal细胞出现两层,其长轴彼此垂直,分别平行于环行肌和纵行肌。与此同时环行肌层内亦可见少许Cajal细胞;出生前,肌间神经丛部位的Cajal细胞接近成熟,两层细胞的突起进一步增多、伸长,彼此间形成与成人相似的完整的细胞网络。此时深肌丛附近亦可见少量Cajal细胞。结论人的小肠Cajal细胞发育有一定的时间顺序,即肌间神经丛周围最先出现,肌内次之,深肌丛较晚,出生前肌间神经丛周围的Cajal细胞已经接近成熟。这种发育演变若发生异常,可能导致某些胃肠动力障碍性疾病。  相似文献   

16.
External muscle and myenteric plexus from the small intestine of adult guinea-pigs were maintained in vitro for 3 or 6 days. Myenteric neurons and smooth muscle cells from such organotypic cultures were examined at the electron-microscopic level. An intact basal lamina was found around the myenteric ganglia and internodal strands. Neuronal membranes, nuclei and subcellular organelles appeared to be well preserved in cultured tissues and ribosomes were abundant. Dogiel type-II neurons were distinguishable by their elongated electron-dense mitochondria, numerous lysosomes and high densities of ribosomes. Vesiculated nerve profiles contained combinations of differently shaped vesicles. Synaptic membrane specializations were found between vesiculated nerve profiles and nerve processes and cell bodies. The majority of nerve fibres were well preserved in the myenteric ganglia, in internodal strands and in bundles running between circular muscle cells. No detectable changes were found in the ultrastructure of the somata and processes of glial cells. Longitudinal and circular muscle cells from cultured tissue had clearly defined membranes with some close associations with neighbouring muscle cells. Caveolae occurred in rows that ran parallel to the long axis of the muscle cells. These results indicate that the ultrastructural features of enteric neurons and smooth muscle of the guinea-pig small intestine are well preserved in organotypic culture.  相似文献   

17.
The 1-20 fragment of synthetic porcine galanin, prepared by tryptic digestion of the intact molecule, was equipotent to synthetic porcine galanin 1-29 in the smooth muscle actions of exciting the rat jejunal longitudinal muscle in vitro and inhibiting circular muscle contractions of the canine small intestine in vitro and in vivo, but was less potent in inhibiting nerve-stimulated contractions of the guinea-pig taenia coli. Fragment 21-29 was effective at high doses only in the canine ileum. Activity of galanin 1-11 was greatly reduced in the dog in vivo. These results may reflect species or cell type differences.  相似文献   

18.
Galanin: an inhibitory neural peptide of the canine small intestine   总被引:4,自引:0,他引:4  
Galanin injected intraarterially during phasic activity of the canine small intestine in vivo produced inhibition. Fifty percent inhibition occurred at 1.5 +/- 0.5 X 10(-10) mols lasting for 0.7 min. The inhibitory response was not decreased by treatment with atropine, hexamethonium, yohimbine or naloxone, suggesting that muscarinic, nicotinic, alpha 2 adrenergic or opiate receptors were not being stimulated. Since tetrodotoxin blockade of nerves did not reduce the response and galanin at 10(-10) mols was able to eliminate the smooth muscle response to intraarterial acetylcholine, we suggest that galanin acts to inhibit smooth muscle directly. Galanin 10(-9) M added to the muscle bath also inhibited phasic activity of the canine ileum circular muscle in vitro in the presence of tetrodotoxin. These results suggest that the neural peptide galanin may be a non-adrenergic, non-cholinergic, non-opioid neurotransmitter in the canine small intestine.  相似文献   

19.
The distribution pattern of histochemically detectable 5'-nucleotidase (5'-Nase) activity is described in smooth muscle cells of the rat's gastrointestinal tube (esophagus, stomach, small intestine, large intestine). Both, light and electron microscopic methods are used. Faint positive 5'-Nase activity is observed on smooth muscle cells of the lamina muscularis mucosae in the thoracal esophagus whereas it is completely absent from smooth muscle cells of the abdominal esophagus and the stomach. In the small and large intestine strong positive 5'-Nase reaction is found on smooth muscle cells of the lamina muscularis mucosae and the innermost part of the lamina muscularis externa. In the circular and longitudinal layer of the lamina muscularis externa a slight increase in 5'-Nase activity is observed from the proximal to the distal segments. The reaction product is restricted to the outer cell surface of smooth muscle cells. In the small intestine the strong enzymatic activity in the innermost part of the muscularis externa is found to be localized at small and dense muscle cells (sd-cells). Common morphological and histochemical characteristics of sd-cells and smooth muscle cells of the lamina muscularis mucosae are emphasized. Hypothetical functions e.g. uptake of precursors of nucleosidephosphates, possible functional connection to a high glycogen content, correlation between 5'-Nase activity and proliferation capacity and local vasodilatory effect are discussed.  相似文献   

20.
Structure-activity studies with a number of adenosine derivatives and analogs, measuring their relaxant effects in a variety of smooth muscle systems, were conducted in the hope of obtaining indications of the possible involvement of adenylate cyclase in their mechanism of action. While it was confirmed that a C6 aminofunction is of importance for agonist activity, several compounds, in particular the relatively potent N6-hydroxylaminopurine ribonucleoside, were not antagonized by 8-p-sulfophenyltheophylline, indicating that some nucleosides cause smooth muscle relaxation by a mechanism other than adenosine receptor stimulation. Nucleosides not bearing a C6 aminofunction were essentially inactive in rabbit intestine but showed weak relaxant effects in bovine coronary artery; this may indicate a difference between the adenosine receptor systems in these tissues and the intracellular mechanisms of relaxation. Comparing the relative potencies of compounds such as adenosine, 2-chloroadenosine, 5'-(N-ethylcarboxamido)adenosine, and (-)N6-(R-phenylisopropyl)adenosine, which have been used widely to classify adenylate cyclase-coupled adenosine receptors, no uniform pattern became apparent among different smooth muscle systems used in this study and reported in the recent literature. Thus, we conclude that a classification of smooth muscle adenosine receptors according to criteria established for cyclase-coupled receptors may be inappropriate or misleading, particularly with respect to implications of adenylate cyclase involvement in the relaxant effects of adenosine and related nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号