首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
At least some cells within bone marrow stromal populations are multipotential (i.e., differentiate in vitro into osteoblasts, chondrocytes, and adipocytes) and thus designated skeletal stem cells (SSCs) or mesenchymal stem cells (MSCs) amongst other names. Recently, a subpopulation of stromal cells, notably osteoblasts or their progenitors, has been identified as a definitive regulatory component of the hematopoietic stem cell (HSC) niche. Thus, the development of methods for purifying not only SSCs but cells comprising the HSC niche is of interest. Here, we report a method for purifying a novel bone marrow‐derived population with a high frequency of osteoprogenitors and high expression levels of osteoblast differentiation markers (highly purified osteoprogenitors (HipOPs)) as well as markers of the bone niche for HSCs. In vivo transplantation experiments demonstrated that donor HipOPs differentiated into not only osteoblasts, osteocytes and cells around sinusoids but also hematopoietic cells. Thus, HipOPs represent a novel population for simultaneous reconstruction of bone and bone marrow microenvironments. J. Cell. Biochem. 108: 368–377, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Mesenchymal stem cells: characteristics and clinical applications   总被引:23,自引:0,他引:23  
Mesenchymal stem cells (MSCs) are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD) treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI), which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.  相似文献   

3.
The first non-hematopoietic mesenchymal stem cells (MSCs) were discovered by Friedenstein in 1976, who described clonal, plastic adherent cells from bone marrow capable of differentiating into osteoblasts, adipocytes, and chondrocytes. More recently, investigators have now demonstrated that multi-potent MSCs can be recovered from a variety of other adult tissues and differentiate into numerous tissue lineages including myoblasts, hepatocytes and possibly even neural tissue. Because MSCs are multipotent and easily expanded in culture, there has been much interest in their clinical potential for tissue repair and gene therapy and as a result, numerous studies have been carried out demonstrating the migration and multi-organ engraftment potential of MSCs in animal models and in human clinical trials. This review describes the recent advances in the understanding of MSC biology.  相似文献   

4.
5.
The mesenchymal stromal cell contribution to homeostasis   总被引:1,自引:0,他引:1  
Adult mesenchymal stromal cells (MSCs) are undifferentiated multi-potent cells predominantly residing in the bone marrow (BM), but also present with similar but not identical features in many other tissues such as blood, placenta, dental pulp, and adipose tissue. MSCs have the potential to differentiate into multiple skeletal phenotypes like osteoblasts, chondrocytes, adipocytes, stromal cells, fibroblasts, and possibly tendons. MSCs differentiation potential, ex vivo expansion capacity, nurturing and immunomodulatory proficiencies oriented these versatile cells in several areas of ongoing clinical applications. However, the absence of MSC-specific markers for isolation and characterization together with the lack of a comprehensive view of the molecular pathways governing their particular biological properties, remains a primary obstacle to their research and application. In this review we discuss some areas of growing interest in MSCs biology: their contribution to the hematopoietic stem cell (HSC) niche, to regenerative medicine, their role in cancer and in therapy as delivery tools and their micro-RNA (miRNA) signatures. Despite rapid progress in the MSC field, it is generally thought that only a fraction of their full potential has been realized thus far.  相似文献   

6.
Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy   总被引:1,自引:0,他引:1  
Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.  相似文献   

7.
非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一,但脐带血移植面临的最大挑战是造血干细胞(HSCs)数量不足,特别是成人患者受到脐带血干细胞数量的限制,导致造血及免疫恢复延迟,非复发死亡率升高。体外扩增脐带血HSCs(UCB-HSCs)是解决该问题的途径之一。研究发现可以通过模拟骨髓造血龛(niche)这一生态位使HSCs在体外进行自我更新增殖,而间充质干细胞(MSCs)正是造血龛的重要的组成细胞之一。本文将探讨MSCs在UCB-HSCs体外扩增中的应用。重点以MSCs促造血的特点、机制,促进脐带血干细胞增殖的各种策略以及其临床应用和前景做一综述。  相似文献   

8.
Mesenchymal stem cells (MSCs) were discovered as a rare population of non-hematopoietic stem cells that reside in the bone marrow and interact closely with hematopoietic stem cells to support their growth and differentiation. MSCs are multipotent cells that have the ability to differentiate into cells of the mesenchymal lineage including adipocytes, osteocytes and chondrocytes and they have been reported to home to areas of tissue injury and participate in tissue repair. More recently, MSCs have also been described to possess anti-inflammatory and immunomodulatory properties that can affect multiple arms of the immune system. MSCs have been shown to inhibit T and B cell proliferation, downregulate the lytic activity of cytotoxic T lymphocytes and NK cells, inhibit the maturation and antigen-presenting function of dendritic cells and modulate macrophage function through both contact-dependent and contact-independent mechanisms. The administration of MSCs in models of autoimmune disease such as collagen-induced arthritis, EAE and autoimmune diabetes has provided additional evidence for an immunoregulatory role of MSCs supporting their use in controlling autoimmunity. The administration of allogeneic MSCs as immunosuppressive agents represents a viable approach as they appear to be largely non-immunogenic and clinical trials with allogeneic MSCs are currently underway in graftversus- host disease, Crohn's disease and type I diabetes indications. The immunomodulatory properties, mechanism of action and potential clinical utility of MSCs are reviewed herein.  相似文献   

9.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.  相似文献   

10.
Mesenchymal stem cells and the treatment of cardiac disease   总被引:32,自引:0,他引:32  
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.  相似文献   

11.
12.
In this paper we describe an approach that aims to provide fundamental information towards a scientific, biomechanical basis for the use of natural coral scaffolds to initiate mesenchymal stem cells into osteogenic differentiation for transplant purposes. Biomaterial, such as corals, is an osteoconductive material that can be used to home human derived stem cells for clinical regenerative purposes. In bone transplantation, the use of biomaterials may be a solution to bypass two main critical obstacles, the shortage of donor sites for autografts and the risk of rejection with allograft procedures. Bone regeneration is often needed for multiple clinical purposes for instance, in aesthetic reconstruction and regenerative procedures. Coral graft Porites lutea has been used by our team for a decade in clinical applications on over a thousand patients with different bone pathologies including spinal stenosis and mandibular reconstruction. It is well accepted that human bone marrow (hBM) is an exceptional source of mesenchymal stem cells (MSCs), which may differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. Isolated MSCs from human bone marrow were induced into osteoblasts using an osteogenic medium enriched with two specific growth factors, FGF9 and vitamin D2. Part of the cultured MSCs were directly transferred and seeded onto coral scaffolds (Porites Lutea) and induced to differentiate into osteoblasts and part were cultured in flasks for osteocell culture. The data support the concept that hBM is a reliable source of MSCs which may be easily differentiated into osteoblasts and seeded into coral as an optimal device for clinical application. Within this project we have also discussed the biological nature of MSCs, their potential application for clinical transplantation and the prospect of their use in gene therapy.  相似文献   

13.
14.
Acquired aplastic anemia(AA) is a bone marrow failure syndrome characterized by peripheral cytopenias and bone marrow hypoplasia. It is ultimately fatal without treatment, most commonly from infection or hemorrhage. Current treatments focus on suppressing immune-mediated destruction of bone marrow stem cells or replacing hematopoietic stem cells(HSCs) by transplantation. Our incomplete understanding of the pathogenesis of AA has limited development of targeted treatment options. Mesenchymal stem cells(MSCs) play a vital role in HSC proliferation; they also modulate immune responses and maintain an environment supportive of hematopoiesis. Some of the observed clinical manifestations of AA can be explained by mesenchymal dysfunction. MSC infusions have been shown to be safe and may offer new approaches for the treatment of this disorder. Indeed, infusions of MSCs may help suppress auto-reactive, T-cell mediated HSC destruction and help restore an environment that supports hematopoiesis. Small pilot studies using MSCs as monotherapy or as adjuncts to HSC transplantation have been attempted as treatments for AA. Here we review the current understanding of the pathogenesis of AA and the function of MSCs, and suggest that MSCs should be a target for further research and clinical trials in this disorder.  相似文献   

15.
Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.  相似文献   

16.
Osteocytes are the most abundant cells in bone and there is increasing evidence that they control bone remodeling via direct cell-to-cell contacts and by soluble factors. In the present study, we have used the MLO-Y4 cell line to study the effect of osteocytes on the proliferation, differentiation and bone-forming capacity of bone marrow mesenchymal stem cells (MSC). Conditioned media (CM) from osteocytic MLO-Y4 and osteoblastic MC3T3-E1 cell lines were collected and added on mouse bone marrow cultures, in which MSC were induced to osteoblasts. There was a significant increase in alkaline phosphatase activity and osteocalcin expression in the presence of MLO-Y4 CM. No such stimulus could be observed with MC3T3-E1 CM. There was almost 4-fold increase in bone formation and up to 2-fold increase in the proliferation of MSC with MLO-Y4 CM. The highly proliferating bone marrow cells were negative for ALP and OCN, suggesting that they could represent early osteoblast precursors. MLO-Y4 CM did not enhance the viability of mature osteoblasts nor protected them of apoptosis. This is the first study to describe soluble signals between osteocytes and osteoblasts and there most likely are several still unidentified or unknown factors in osteocyte CM. We conclude that osteocytes have an active stimulatory role in controlling bone formation.  相似文献   

17.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

18.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic multi-potent stem-like cells that are capable of differentiating into both mesenchymal and non-mesenchymal lineages. In fact, in addition to bone, cartilage, fat, and myoblasts, it has been demonstrated that MSCs are capable of differentiating into neurons and astrocytes in vitro and in vivo. MSCs are of interest because they are isolated from a small aspirate of bone marrow and can be easily expanded in vitro. As such, these cells are currently being tested for their potential use in cell and gene therapy for a number of human diseases. Nevertheless, there are still some open questions about origin, multipotentiality, and anatomical localization of MSCs. In this review, we discuss clinical trials based on the use of MSCs in cardiovascular diseases, such as treatment of acute myocardial infarction, endstage ischemic heart disease, or prevention of vascular restenosis through stem cell-mediated injury repair. We analyze data from clinical trials for treatment of osteogenesis imperfecta (OI), which is a genetic disease characterized by production of defective type I collagen. We describe progress for neurological disease treatment with MSC transplants. We discuss data on amyotrophic lateral sclerosis (ALS) and on lysosomal storage diseases (Hurler syndrome and metachromatic leukodystrophy). A section of review is dedicated to ongoing clinical trials, involving MSCs in treatment of steroid refractory Graft Versus Host Disease (GVHD); periodontitis, which is a chronic disease affecting periodontium and causing destruction of attachment apparatus, heart failure, and bone fractures. Finally, we will provide information about biotech companies developing MSC therapy.  相似文献   

19.
The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel.  相似文献   

20.
Mesenchymal stem cells: clinical applications and biological characterization   总被引:45,自引:0,他引:45  
Mesenchymal stem cells (MSCs) have been isolated from bone marrow, periosteum, trabecular bone, adipose tissue, synovium, skeletal muscle and deciduous teeth. These cells have the capacity to differentiate into cells of connective tissue lineages, including bone, fat, cartilage and muscle. A great deal has been learned in recent years about the isolation and characterization of MSCs, and control of their differentiation. These cells have generated a great deal of interest because of their potential use in regenerative medicine and tissue engineering and there are some dramatic examples, derived from both pre-clinical and clinical studies, that illustrate their therapeutic value. This review summarizes recent findings regarding the potential clinical use of MSCs in cardiovascular, neural and orthopaedic applications. As new methods are developed, there are several aspects to the implanted cell-host interaction that need to be addressed before we can fully understand the underlying mechanisms. These include the host immune response to implanted cells, the homing mechanisms that guide delivered cells to a site of injury and the differentiation in vivo of implanted cells under the influence of local signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号