首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a detailed comparative analysis of external morphology of four of the most invasive goby species in Europe (round goby Neogobius melanostomus, bighead goby Ponticola kessleri, monkey goby Neogobius fluviatilis and racer goby Ponticola gymnotrachelus) and interprets some ecological requirements of these species based on their morphological attributes. The results are evaluated within an ontogenetic context, and the morphological differences between the species are discussed in terms of the question: can special external shape adaptations help to assess the invasive potential of each species? The morphometric analyses demonstrate important differences between the four invasive gobies. Neogobius melanostomus appears to have the least specialized external morphology that may favour its invasive success: little specialization to habitat or diet means reduced restraints on overall ecological requirements. The other three species were found to possess some morphological specializations (P. kessleri to large prey, N. fluviatilis to sandy habitats and P. gymnotrachelus to macrophytes), but none of these gobies have managed to colonize such large areas or to reach such overall abundances as N. melanostomus.  相似文献   

2.
At present, the invasive round and bighead gobies are the most abundant benthic fish species in the near shore zone of the Middle Danube. We compared their diet seasonally in natural and artificial habitats and contrasted it with the food supply. The composition of the macroinvertebrate community was determined mainly by seasonal changes, whereas habitat type had smaller effect. Round gobies followed these changes flexibly. They consumed mainly chironomids in the spring, whilst amphipods and molluscs in the summer and autumn. Bighead gobies relied on amphipods in each season and in both habitats, and consumed fish, too, including round goby (intraguild predation). Diet overlap was determined by the morphological differences of the species allowing a varying degree of differentiation according to the seasonally changing food supply. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Accurate identification of invaders, and especially their juveniles and eggs, is a difficult task if several morphologically similar species co‐occur. The aim of the study was to develop and test a rapid and cost‐effective procedure for identification of five species of invasive gobies occurring in the middle Danube basin, namely round goby Neogobius melanostomus, bighead goby Ponticola kessleri, monkey goby Neogobius fluviatilis, racer goby Babka gymnotrachelus and tubenose goby Proterorhinus semilunaris. First, a 708 bp fragment of the cytochrome oxidase I gene was amplified and sequenced for representative samples of these five species. Appropriate sequences of the five species available in public databases were used for in silico analysis. A digestion of the amplified fragment with the BfaI enzyme was found to be suitable for the species identification, as it showed unique restriction patterns for each species. The technique was also successfully applied for fish remains from burbot Lota lota stomachs. Thus the technique could be a useful tool in monitoring biological invasions, especially by identifying specimens that could not be determined on the basis of morphological features. The results demonstrate that the PCR‐RFLP method may in some cases be more reliable for species identification than a standard DNA sequencing.  相似文献   

4.
The distributions of invasive Neogobius species were investigated in the Slovak section of the River Danube from Bratislava downstream to the village of Chl'aba. During October 2004, the main channel of the Danube was sampled, including by‐pass, head‐race and tail‐race canals of the Gab?íkovo dam, backwaters and the lower‐most sections of the tributaries Malý Dunaj, Hron, Váh and Ipel’. Three Neogobius species already documented in Slovakia were captured (monkey goby Neogobius fluviatilis, bighead goby N. kessleri, round goby N. melanostomus), with the latter two species being found in almost all stretches of the Slovak Danube. Monkey goby had a most limited distribution, and no racer goby N. gymnotrachelus were observed. The abundance of particular Neogobius species appeared to depend on the character of the shoreline habitat, and a possible association between larger towns and the abundance of bighead and round gobies requires further investigation.  相似文献   

5.
  1. The round goby (Neogobius melanostomus) is among the fastest-spreading introduced aquatic species in North America and is radiating inland from the Great Lakes into freshwater ecosystems across the landscape. Predicting and managing the impacts of round gobies requires information on the factors influencing their distribution in habitats along the invasion front, yet this information is not available for many recently invaded ecosystems. We evaluated the seasonal habitat use and biomass of round gobies in an inland temperate lake to define the spatiotemporal scope of biological interactions at the leading edge of the round goby invasion.
  2. Using novel statistical approaches, we combined hierarchical models that control for imperfect species detection with flexible smooth terms to describe non-linear relationships between round goby abundance and environmental gradients. Subsequently, we generated accurate detection-corrected estimates of the standing stock biomass of round gobies.
  3. Our results show seasonally differentiated habitat niches, where suitable round goby habitat in summer months is restricted to shallow depths (<18.4 m) with a mixture of vegetative and mussel cover. We found high round goby biomass of 122 kg/ha in occupied habitats during the summer, with a total lake-wide biomass of 766,000 kg. In winter, round gobies migrate to deep offshore habitats and disperse, dramatically altering their scope for biological interactions with resident aquatic species across summer and winter seasons.
  4. The results of this study indicate that the scope of biological interactions in inland lakes may be seasonally variable, with potential for high round goby biomass in shallow lakes or at the periphery of deep lakes in the summer months. Such shallow-water habitats may therefore present higher risk of ecological impacts from round gobies in invaded lentic ecosystems. As round gobies expand inland, consideration of seasonal habitat use will be an important factor in predicting the impacts of this pervasive invader.
  相似文献   

6.
We examined the abundance and meso‐habitat use of gobiid species during both day and night along 43 stretches (500‐m long) of the littoral zone at five locations of the Middle Danube, Hungary, in spring and in summer 2004. Electro‐fishing catch per unit effort sampling revealed significantly higher relative densities at night than during the day. Gobiids occupied all the available habitats encountered during sampling. Habitat‐abundance relationships from night‐time samples revealed that the two most abundant species, round goby Neogobius melanostomus and bighead goby Neogobius kessleri, were found in highest relative density along gravel beach and artificial rip‐rap habitats; these species were in relatively low density in sandy areas. Monkey goby Neogobius fluviatilis was more abundant in natural shorelines than in rip‐rap habitats and dispersed more consistently between sandy and gravel beaches. Tubenose goby Proterorhinus marmoratus demonstrated great plasticity in meso‐habitat use. In conclusion, Ponto‐Caspian gobies occurred rather consistently along the Hungarian section of the Danube, occupying all available habitats examined. Abundance‐habitat relations suggest plasticity in meso‐habitat use but partial segregation between species. Further studies are required at multiple spatial scales to assess how micro‐ and meso‐habitat use varies with fluctuating population densities.  相似文献   

7.
The Ponto-Caspian round goby (Neogobius melanostomus, Pallas 1814) most probably was established in the Gulf of Gdańsk, Baltic Sea, in the late 1980’s and has since become one of the dominant species in the region. In this study we assess the role of round gobies as prey for two important fish species in the Gulf of Gdańsk, cod (Gadus morhua) and perch (Perca fluviatilis). We compared their present diet with stomach analyses from the area prior the round goby establishment, as well as with diet analysis from Baltic regions where round gobies are absent. There were large differences in the diet between cods from the Gulf of Gdańsk 2003–2006 compared to cods in earlier studies (1977–1981) from the Southern Baltic Sea. There were also large differences in cod and perch diets from areas with and without round goby. Presently, round goby constitutes the most important prey for medium sized cods in Gulf of Gdańsk, and perch from the same area almost exclusively feed on gobiids. Stomach analysis, trophic level estimates, and stable isotope analyses all indicated that cod and perch in Gulf of Gdańsk after the round goby establishment belonged to a similar trophic level. Beside round goby, no mussel feeding fish contributed much to the diet of cod or at all to the diet of perch. Thus, it is likely that round gobies constitute a new energetic pathway from mussels to top predators. However, due to the short time elapsed after round goby establishment, we can only speculate on the species future impacts on Baltic food webs.  相似文献   

8.
During the past decade, a bottom-dwelling, aggressive, multiple-spawning fish, the round goby (Gobiidae: Neogobius melanostomus), has spread from its native region in the Ponto-Caspian throughout Europe and to the Laurentian Great Lakes in North America. An international workshop, held at the Hel Marine Station, Poland, was organized to summarize population features of the round goby. Common fish predators of round gobies in the Great Lakes and in native regions are obligate and facultative benthic fishes and occasionally, pelagic fishes. In contrast, the main predator of the round goby in the Gulf of Gdansk is the Great Cormorant (Phalacrocorax carbo). In the Great Lakes, round gobies have lead to the decline of mottled sculpin (Cottus bairdi) and logperch (Percina caprodes) and reduced the hatching success of native fishes by feeding on their eggs. In the Gulf of Gdansk, round gobies have increased in abundance, while three-spined sticklebacks (Gasterosteus aculeatus) have declined. Round gobies have a broad diet throughout their range; larger specimens are molluscivores. There are fewer species of parasites and lower infection rates of round gobies in recently colonized areas than in native areas. Overall, newly colonized round gobies in brackish waters and lakes are smaller, mature earlier, have a male biased operational sex ratio and are more short-lived compared with round gobies from marine (native) habitats.  相似文献   

9.
The round goby (Neogobius melanostomus) first invaded North America in 1990 when it was discovered in the St. Clair River. Despite more than 15 years of potential invasion, many Great Lakes’ lotic systems remained uninvaded. Recently, we captured the round goby from several Great Lakes tributaries known as species-at-risk hotspots. With a combination of field sampling of round gobies and literature review of the impact of round gobies on native taxa, we assess the potential impacts of the secondary invasion to native species using three mechanisms: competition; predation; and indirect impacts from the loss of obligate mussel hosts. We estimate that 89% (17/19) of benthic fishes and 17% (6/36) of mussels that occur in these systems are either known or suspected to be impacted by the secondary invasion of round goby. In particular, we note that the distribution of potential impacts of round goby invasion was largely associated with species with a conservation designation, including seven endangered species (1 fish, 6 mussels). As these recent captures of round goby represent novel occurrences in high diversity watersheds, understanding the potential impacts of secondary invasion to native biota is fundamental to prevent species declines and to allow early mitigation.  相似文献   

10.
In this study correlations between body size and muscle fatty and amino acid content of two species of goby, round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis) caught from river Rhine (Germany) were investigated. Among saturated fatty acids (SFAs), mono- (MUFA) and polyunsaturated fatty acids (PUFAs) only SFAs were significantly higher in round goby than monkey goby (P < 0.05). In general, the correlation between body size of both gobies and the content of most of the individual fatty acids was not significant. In monkey goby, the content of palmitic acid (C16:0) and oleic acid (C18:1 n-9) was positively correlated with weight (r = 0.43) and total length (r = ?0.58), respectively, and the content of docosahexaenoic acid (DHA) increased with condition factor (r = 0.50). The content of threonine, arginine, valine, phenylalanine and isoleucine in monkey goby was higher than those of round goby (P < 0.05). In round goby the three essential amino acids arginine, valine and leucine were positively (P < 0.05) correlated with body length, which indicates that longer round gobies are of higher nutritional value.  相似文献   

11.
Metazoan parasites were investigated in three non‐native fishes (monkey goby Neogobius fluviatilis, bighead goby Neogobius kessleri and round goby Neogobius melanostomus) collected from the former and current main channel of the River Danube and from the River Hron, Slovakia, in November 2003. Thirteen parasite species were identified: Triaenophorus crassus, Diplostomum sp., Tylodelphys clavata, Metorchis xanthosomus, Nicolla skrjabini, Gyrodactylus proterorhini, Pomphorhynchus laevis, Contracoecum sp., Raphidascaris acus, Anguillicola crassus, Unio tumidus, Anodonta anatina and Pseudoanodonta complanata. The maximum parasite diversity was found in N. fluviatilis. Total parasite abundance was significantly higher in N. kessleri, but no significant differences among sampling sites were observed. Pomphorhynchus laevis and glochidia of Anodonta anatina reached 100% prevalence in N. kessleri in the new channel of the Danube and, in general, these species were also the most prevalent parasites in all three goby species. For endoparasites, gobies served mostly as intermediate (digenean, cestodes and nematodes) or paratenic (acantocephalan and nematodes) hosts. All parasite species found are common parasites in the Middle Danube basin. No parasites specific to Neogobius, known from their native populations, were observed.  相似文献   

12.
Sagittal otolith shapes were investigated in order to identify three sympatric species of south Caspian gobies (Caspian goby Neogobius caspius, deepwater goby Ponticola bathybius and bighead goby Ponticola gorlap). The sagittal otoliths in P. bathybius have a rectangular shape and are thick, whereas in N. caspius they are relatively round and thin. In P. gorlap, otoliths have an elongated shape and are relatively thick. The noticeable difference among the otoliths of the three species is the presence of one anterior and one posterior projection in the otoliths of N. caspius and P. gorlap. Among shape indices, form factor (irregularity of surface area), circularity, aspect ratio and rectangularity are the foremost that indicate interspecific variability. The canonical discriminant analysis correctly classifies 94·7% of the original group cases. The overall analyses show the relevance of applying otolith shape for interspecific distinction of the three species of Caspian gobies.  相似文献   

13.
1. We studied the diet of the invasive round goby (Neogobius melanostomus) on a diel basis in the Flint River, a warmwater stream in Michigan, U.S.A. Diet and available prey samples were collected seven times over a 24 h period in four consecutive months. The section of river studied lacked zebra mussels (Dreissena polymorpha), the primary prey of adult round gobies elsewhere in the Great Lakes region. 2. Diet changed on a diel basis with hydropsychid caddisfly and chironomid larvae predominating during the day, chironomid pupae dominating in the evening and heptageniid mayflies dominating at night. Simultaneous study of macroinvertebrate drift suggested that caddisfly and chironomid larvae were most likely picked from submerged rocks, chironomid pupae were most likely taken during their emergent ascent and mayflies were either captured from the drift or picked from rocks. 3. The Flint River lacks a diverse darter (Family: Percidae) and sculpin (Family: Cottidae) fauna and it appears that the round goby has occupied a generalised darter/sculpin niche. Our results indicate that round gobies have the potential to invade successfully riverine systems, particularly those lacking a diverse benthic fish assemblage.  相似文献   

14.
Over the last decade, four species of goby have invaded the Middle Danube area, and all of them have spread rapidly. In the early 1990s, bighead goby Neogobius kessleri appeared in the Middle Danube, where it now seems to thrive. Relatively little is known of the environmental biology and ontogeny of this species in its native and non‐native ranges. In this paper, preliminary results on the external morphology of bighead goby from the Slovak stretch of the Danube are presented within an ontogenetic context. Patterns of relative growth with no apparent changes at small size suggest direct development in bighead goby, although not as profoundly direct as observed in round goby N. melanostomus. Differences in life history between these two closely related species may have important implications for their success in novel environments, favouring the latter in short term (several years) and the former in long term (decades and longer) perspective.  相似文献   

15.
Genetic variability and structure of nonindigenous vs native populations are compared for the Eurasian round goby Neogobius melanostomus and the tubenose goby Proterorhinus marmoratus, which both invaded Lake St. Clair of the North American Great Lakes about 1990. The round goby spread rapidly to all of the Great Lakes and the tubenose goby largely has been restricted to Lake St. Clair, with some recent range extension into western Lake Erie. Risk analyses may indicate whether genetic variability of colonizers is predictive of their relative invasive and establishment successes. The present investigation examined DNA sequence variation across the left domain of the mitochondrial DNA cytochrome b gene in round and tubenose gobies from Eurasian and Great Lakes locations. We also sequenced six additional Neogobius species (including the monkey N.␣fluviatilis, racer N. gymnotrachelus, and bigheadN. kessleri gobies that have been ‘on the move’ in Europe) and the knout goby Mesogobius batrachocephalus from the Black Sea in order to develop diagnostic genetic characters to identify them in case of future and/or undetected invasions and to delineate their phylogenetic relationships. Results show that a diverse number of haplotypes characterize round and tubenose goby populations from both North America and Eurasian sites, fitting a risk analysis prediction of high genetic variability in their successful introductions. Phylogenetic results indicate that the current genus Neogobius is paraphyletic and that the subgenusApollonia thus should be elevated to the level of genus, containingApollonia (N.) melanostomus (the round goby) andA. (N.) fluviatilis (the monkey goby). In addition, there appear to be two separate species of Proterorhinus marmoratus, a marine P. marmoratus Pallas 1814 in the Black Sea (matching the original type locality), and a ‘cryptic’ freshwater species in the Danube and Dnieper Rivers and probably other Eurasian freshwater habitats, as well as invasive in the Great Lakes. We suggest resurrecting the name P. semilunaris Heckel 1837 for the freshwater species (a taxon that was originally described from rivers draining into the Aegean Sea and the Danube River, but was later placed in synonymy with P. marmoratus). An erratum to this article is available at .  相似文献   

16.
Thompson AR 《Oecologia》2005,143(1):61-69
Although it is now recognized that mutualistic species are common and can have stable populations, the forces controlling their persistence are poorly understood. To better understand the mechanisms that impact the stability of obligate mutualists, I conducted several field experiments within a sandy coral reef lagoon in Moorea, French Polynesia that manipulated densities of fish (gobies) that interact mutualistically with shrimp. Obligate, mutualistic partnerships of gobies and shrimp are common on Indo-Pacific coral reefs and have been shown previously to interact as follows: shrimp construct burrows in which both species reside, and gobies warn shrimp of predators through tactile communication. Augmentation of gobies by up to 100% above ambient densities within 9 m2 plots produced no change in overall density of gobies or shrimp because gobies competed intraspecifically for a limited number of shrimp burrows and smaller gobies were outcompeted by larger individuals. I used predators to assess the impact of goby removal on the stability of goby and shrimp populations. First, although surveys taken throughout the lagoon revealed no relationship between goby and predator densities, predators correlated negatively with the proportion of adult gobies and positively with the proportion of small gobies paired with large shrimp. Second, experimental augmentation of predators resulted in a dramatic reduction of adult gobies within predator-addition plots, but had no impact on overall densities as immigrants rapidly replaced the missing adult gobies. Furthermore, goby turnover resulted in an increase in the proportion of small gobies paired with large shrimp because body sizes of gobies and shrimp in a burrow were similar prior to predator introduction, and predators apparently had a greater impact on gobies than shrimp. The mechanisms that prevent expansion (intraspecific competition) and collapse (immigration) of goby-shrimp populations likely contribute to local-scale stability of mutualistic populations in other terrestrial and aquatic environments.  相似文献   

17.
Non‐native fish species pose a major threat to local fish populations and aquatic ecosystems in general. Invasive gobies are a particular focus of research, but with partly inconsistent results. While some studies reported severe detrimental impacts on native species, others have concluded less serious or neutral effects. We provide results from a large‐scale, multi‐annual fish monitoring program on the occurrence and abundance of non‐native fishes in the main stem of a free‐flowing section of the Austrian Danube. Special emphasis was placed on identifying positive or negative interactions of invasive gobies with native species. Whereas most non‐native species occurred too sporadically or were too few in number to infer a direct threat on the local fish community, invasive gobies were among the most common fishes throughout all sampling years. Co‐occurrence analyses revealed species‐ and mesohabitat type‐specific associations of gobies with native species, which were primarily positive. Notably, native predators such as asp, burbot, or perch probably benefit from the ubiquitous gobies. Two characteristic fluvial fishes revealed negative associations with invasive gobies, namely barbel (Barbus barbus) and Danube whitefin gudgeon (Romanogobio vladykovi): they appear to avoid habitats occupied by gobies. Accordingly, high abundances of round and bighead goby most likely resulted in population losses of barbel and whitefin gudgeon, respectively. Overall, our results indicate a limited negative impact of non‐native species in the sampling area. This is because only two out of 51 occurring species were found to be adversely affected by gobies, the share of co‐occurrences with native species was high, and other non‐native species were generally rare. Nevertheless, invasions are highly dynamic, and new non‐native species are likely to occur in the Austrian Danube, calling for continued monitoring and awareness.  相似文献   

18.
Understanding predator avoidance behavior by prey remains an important topic in community and invasion ecology. Recently, the Ponto-Caspian amphipod Echinogammarus ischnus (Stebbing 1898) was accidentally introduced into the Great Lakes. Since its introduction, it has displaced the native amphipod, Gammarus fasciatus (Say 1818), from several locations in the lower lakes. To assess whether behavioral differences in predator avoidance might be a causal mechanism increasing the success of the invasive amphipods, two experiments were conducted examining (1) native and invasive amphipod behavioral responses to five fish species with different foraging behaviors, and (2) amphipod responses to different densities of round gobies, a hyper-abundant benthic invertivore. Echinogammarus reduced its distance moved in the presence of all fish species tested, whereas Gammarus reduced its distance moved only after exposure to round gobies, black crappies, and rainbow darters. Both amphipod species increased the time spent motionless following exposure to round gobies, but not after encountering the scent of most of the remaining fish predators. The exception was that Echinogammarus also responded to black crappie scent whereas Gammarus did not. Although both amphipod species exhibited behavioral responses to many of the fish predators, the magnitude of their responses differed only after exposure to the brown bullhead. In the bullhead trials, Echinogammarus reduced its distance traveled significantly more than Gammarus. Both amphipod species increased their avoidance response to increasing goby density, however, the pattern of avoidance behavior was different. Invasive E. ischnus exhibited a consistently strong avoidance response to round gobies over the test duration. Native G. fasciatus initially avoided goby scent, but then either ceased their avoidance response or showed a hyper-avoidance response, depending on goby density. These results suggested (1) both species of amphipods were able to differentiate and react to a variety of fish predators, (2) invasive Echinogammarus amphipods avoided a larger range of fish predators than the native Gammarus, (3) increased avoidance behavior was associated with an increased density of fish, and (4) the avoidance response patterns of invasive Echinogammarus when faced with round goby predators might lead to increased predation on native Gammarus in habitats where they co-occur.  相似文献   

19.
Non‐native fishes in rivers and seas The number of non‐native fish species in our water bodies is increasing in the course of globalisation. They navigate artificial canals, travel in ballast water of ships or are displaced as eggs attached to ships and other materials. Many of these species remain unnoticed but some may establish a reproductive population and even cause harm. Invasive gobies from the Black Sea – especially the bighead goby and round goby – are taken as an example to explain how biology and ecology can be studied and how we proceed to estimate the potential risk. Simple egg traps may help to reduce dispersal of these fish. Such measures are especially promising at locations such as the Upper Rhine where hydropower dams present bottlenecks.  相似文献   

20.
Sapota  Mariusz R. 《Hydrobiologia》2004,514(1-3):219-224
In recent years, information concerning the awareness of organisms accidentally introduced into the Baltic Sea has substantially improved. Non-indigenous Estuarine and Marine Organisms (NEMO's) are hazardous for the Baltic ecosystem. Currently, about one hundred species are identified as accidentally or intentionally introduced into the Baltic Sea. Ballast waters and escape from aquaculture are the most important invasion vectors. During the last decade, an invasion of the round goby (Neogobius melanostomus) – a Ponto-Caspian fish species has been observed in the Gulf of Gdańsk. The first record of this fish in the Baltic Sea is from 1990. Early detection of the invader enabled the study of population growth and changes in the area. The first years of invasion were characterized by low numbers of individuals and a limited distribution. Later, the round goby gradually colonized all shallow waters in the western part of the Gulf of Gdańsk. Initially the fish inhabited stony and rocky habitats, but later it also occupied sandy bottoms. The round goby is now the dominating fish species in most of the shallow waters of the Gulf of Gdańsk. Two main factors account for the successful invasion of this fish in the region: the state of ecosystem at the time of the invasion and the biological features of N. melanostomus. In the late 1980s, the shallow waters of the Gulf of Gdańsk were almost devoid of piscivorous fishes. Concurrently, bivalves (a preferred prey of the round goby) have increased. Important is also parental care of laid eggs and reproductive strategy. Population growth potential enables the colonization of nearby regions. The first round gobies in the Vistula Lagoon were collected in 1999 and colonization of other Baltic Sea areas is anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号