首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Purification of horse-liver polyol dehydrogenase (PDH) on DE52 anion-exchange cellulose reveals the presence of three fractions with enzyme activity. These appear in the breakthrough volume (PDH-3) and the salt gradient (PDH-1, -2) respectively. The major band of activity (greater than approximately 90%) is found in the PDH-2 fraction. A reexamination of sheep-liver polyol dehydrogenase also reveals the presence of three bands of activity, with the dominant fraction (PDH-3) corresponding to the preparation described by Smith (Biochem. J., 83, 135-144, (1962)). The interaction between horse-liver (and sheep-liver) PDH and Blue Sepharose CL-6B is found to be endothermic. This property is utilized in the final purification step. Horse-liver PDH-2 has a molecular/subunit weight of approximately 85,000/approximately 28,000, a Stokes' radius of 3.8 nm, and an isoelectric point of 7.4.  相似文献   

2.
Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide (O2-1) and peroxide (O2-2) generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60 kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by beta-naphthoquinone-4-sulfonic acid suggests the involvement of lysine at their active sites. Cu2+ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and 30 degrees .  相似文献   

3.
We performed an analysis of allozyme variation in brown trout from Vorobiev creek. Seventeen allozyme loci encoding glycerol-3-phosphate dehydrogenase (G3PDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and esterase D (EST-D) were studied. We found statistically significant differences in allele frequencies for the AAT-1,2*, G3PDH-2,3*, LDH-5*, and MDH-2* loci between brown trout samples collected in 1981–1982 and/or 1992–1995. We suggest that temporal changes of allele frequencies in brown trout from Vorobiev Creek are associated with gene drift.  相似文献   

4.
Changes in subcellular distributions of glucose-6-phosphate dehydrogenase (G6PDH) were observed after fertilization or artificial (KCl) activation of Spisula eggs. Though the total activity of G6PDH did not change during early stages, that in the 100,000g supernatant fraction increased after fertilization, attained a maximum at the first meiotic metaphase, and then decreased. This change of activity in the supernatant was accompanied by a mirror-image change of activity in the pellet. Most of the G6PDH was localized in the 3000g pellet fraction; furthermore, the activity in isolated cortices showed fluctuations during meiosis similar to that of the 3000g pellet fraction. Conditions for the release and binding of the NADP-specific G6PDH from the pellet fraction were investigated in vitro. NADP+ or NADPH can induce release of G6PDH, although NADPH is three to four times more efficient than NADP+. NAD+ does not affect release. High concentrations of salts (ionic strength >0.3) caused complete G6PDH release from the pellet. Although raising the pH alone showed only a slight releasing effect, increase of pH to pH 7 or above considerably augmented release due to NADP+ or NADPH. The release of G6PDH from the pellet fraction was shown to be reversible. These results suggest that the reversible association of G6PDH with particulate components of the cytoplasm may play an important role in regulation of G6PDH activity in marine eggs and that the cortex is one of the sites which may be involved in such regulation. The mechanism of recombination of G6PDH with its sites remains to be elucidated.  相似文献   

5.
THE ENZYMIC HYDROLYSIS OF PHOSPHATIDYL INOSITOL BY GUINEA PIG BRAIN:   总被引:1,自引:0,他引:1  
Abstract—
  • 1 Phosphatidylinositol hydrolase activity of homogenates of guinea pig brain was studied by using [2-3H]inositol labelled substrate and measuring the release of radioactivity into the acid soluble fraction.
  • 2 Inositol phosphate and diglyceride were found to be the main hydrolysis products. The principal enzyme involved, therefore, is a phosphatidylinositol inositolphosphohydrolase.
  • 3 Most of the enzymic activity (61 per cent) was found in the soluble fraction. Osmotic shock of the high speed particulate fraction resulted in release of an additional 23 1 per cent into the soluble fraction. However, as contrasted to lactate dehydrogenase, significant activity remained particulate bound.
  相似文献   

6.
Summary The ability of polyamines and other cationic compounds including monoamines, amino acids, poly-L-arginine, poly-D-lysine and poly-L-lysine, to alter pyruvate dehydrogenase (PDH) activity in mitochondria from rat epididymal adipocytes was determined. PDH was assayed with the substrate [1-14C] pyruvate in the presence of 0.05 mM Ca2+ and Mg2+. Nine of the fourteen compounds tested at 0.1 mM caused a significant increase (procaine, 3-(-morpholinopropionyl) benzo[b]thiophene [VII], spermine, spermidine, putrescine, lysine and tryptophan) or decrease (poly-L-arginine, 3-(-piperidinopropionyl) benzo[b]thiophene) in PDH activity. None of these compounds nonenzymatically decarboxylated [1-14C] pyruvate to release 14CO2. NaF, a PDH phosphatase inhibitor, suppressed the stimulatory effects of those compounds tested: procaine, tryptophan, VII, spermine and spermidine. These results imply that these five compounds activate PDH activity through stimulation of the PDH phosphatase. When the Mg2+ concentration was increased from 0.05 to 4.5 mM, the stimulatory effect of spermine was increased, consistent with the finding by others that spermine lowers the Km of the enzyme for Mg2+. However, at Mg2+ concentrations greater than 0.3 mM, the stimulatory effect of VII was unaltered, procaine failed to alter PDH activity, lysine inhibited PDH activity, and poly-L-lysine stimulated PDH activity. Therefore, polyamines and other positively charged small molecules may be physiologic regulators of PDH activity.  相似文献   

7.
Cytosolic glycerol-3-phosphate dehydrogenase (cG3PDH) occupies the branch point between the glycolytic pathway and triglyceride biosynthesis. However, the regulatory mechanism of the cG3PDH activity has remained obscure. Here we report that cG3PDH is efficiently inhibited by modification of the thiol group through a redox mechanism. In this study, we found that sodium selenite and nitric oxide (NO) donors such as S-nitroso-N-acetylpenicillamine and 3-morpholinosydnonimine inhibited cG3PDH activity, and that similar effects could be achieved with selenium metabolites such as selenocysteine and selenomethionine. Furthermore, we found that reducing agents, such as dithiothreitol and β-mercaptoethanol, restored the cG3PDH activity suppressed by selenite and NO both in vitro and in cultured cells. Buthionine sulfoximine depleted levels of both reduced glutathione and the oxidized form but had no effect on the suppression of cG3PDH activity by selenite in cultured cells. Moreover, thiol-reactive agents, such as N-ethylmaleimide and o-iodosobenzoic acid, blocked the enzyme activity of cG3PDH through the modification of redox-sensitive cysteine residues in cG3PDH. The inhibitor of NO synthase, L-NG-nitro-arginine, restored the cG3PDH activity inhibited by NO in cultured cells, whereas the inhibitor of guanylyl cyclase, 1H-[1,2,4] oxadiazole[4,3-α] quinoxalin-1-one (ODQ), has no effect. NO directly inhibits cG3PDH activity not via a cGMP-dependent mechanism. Finally, using site-directed mutagenesis, we found that Cys102 of cG3PDH was sensitive to both selenite and NO. From the results, we suggest that cG3PDH is a target of cellular redox regulation.  相似文献   

8.
The changes in the activity of glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH) (EC 1.1.1.44) in leaf tissues and the subcellular localisation of their isozymes in protoplasts derived from healthy and potato virus Y (PVY) infected plants of Nicotiana tabacum L. cv. Samsun were determined. The activities of G6PDH and 6PGDH were markedly increased in virus-infected leaves during the acute phase of infection both in crude homogenate and partial purificate (when compared with the values found in healthy control plants) and correlated with the multiplication curve of PVY. Intact chloroplasts and soluble cytosolic proteins were obtained from whole plants upon the culmination of the multiplication curve of PVY and upon the enhancement of the activity of both dehydrogenases by means of differential centrifugation of broken protoplasts. The chloroplastic fraction from infected protoplasts (based on chlorophyll content or NADP+-triosephosphate dehydrogenase activity) showed an enhanced activity of G6PDH (1.81 times that of healthy protoplasts), and 6PGDH (1.77 times). Cytosol from infected protoplasts (based on phosphoenolpyruvate carboxylase activity) contained only slightly enhanced activities of G6PDH and 6PGDH (only 1.26 and 1.16 times, respectively).  相似文献   

9.
Dihydrolipoamide dehydrogenase is a flavoenzyme that reversibly catalyzes the oxidation of reduced lipoyl substrates with the reduction of NAD+ to NADH. In vivo, the dihydrolipoamide dehydrogenase component (E3) is associated with the pyruvate, α-ketoglutarate, and glycine dehydrogenase complexes. The pyruvate dehydrogenase (PDH) complex connects the glycolytic flux to the tricarboxylic acid cycle and is central to the regulation of primary metabolism. Regulation of PDH via regulation of the E3 component by the NAD+/NADH ratio represents one of the important physiological control mechanisms of PDH activity. Furthermore, previous experiments with the isolated E3 component have demonstrated the importance of pH in dictating NAD+/NADH ratio effects on enzymatic activity. Here, we show that a three-state mechanism that represents the major redox states of the enzyme and includes a detailed representation of the active-site chemistry constrained by both equilibrium and thermodynamic loop constraints can be used to model regulatory NAD+/NADH ratio and pH effects demonstrated in progress-curve and initial-velocity data sets from rat, human, Escherichia coli, and spinach enzymes. Global fitting of the model provides stable predictions to the steady-state distributions of enzyme redox states as a function of lipoamide/dihydrolipoamide, NAD+/NADH, and pH. These distributions were calculated using physiological NAD+/NADH ratios representative of the diverse organismal sources of E3 analyzed in this study. This mechanistically detailed, thermodynamically constrained, pH-dependent model of E3 provides a stable platform on which to accurately model multicomponent enzyme complexes that implement E3 from a variety of organisms.  相似文献   

10.
Intact chloroplasts isolated from mature leaf tissue of the homosporous fern Athyrium filixfemina were osmotically ruptured and subjected to starch gel electrophoresis in side by side comparisons with whole leaf extracts. The single enzyme activities of reportedly cytosolic [NADP]IDH and [NADP]ME were not expressed in the chloroplast fraction, and these were used as controls ensuring the cytosol-free quality of the chloroplast preparations. Isozymes F1,6DP-1, PGI-1, PGM-1, 6PGDH-1, ALDO-1, TPI-2, [NAD(P)]G3PDH-1, and [NAD(P)]G3PDH-2 are active in the chloroplast fraction, whereas Fl,6DP-2, PGI-2, PGM-2, 6PGDH-2, ALDO-2, and TPI-1 were lacking from the chloroplast fraction and are considered cytosolic. The single enzyme activities observed for AAT and SkDH, are chloroplastic. These data indicate that the two isozymes of certain enzymes in Athyrium filix-femina are not the products of duplicated loci resulting from polyploidy, but are distinct and subcellularly compartmentalized as demonstrated in heterosporous plants. Thus A. filix-femina is functionally diploid in spite of its high chromosome number of 2n = 80.  相似文献   

11.
This work was undertaken to improve a separation method for preparation of large amounts of erythroid cells of different age with homogeneous and minimal contamination of myeloid cells. Our method was suitably employed in the study of the decay mechanism of glucose-6-phosphate dehydrogenase (G6PDH) during the erythroid cell maturation.Twenty fractions of erythroid cells at different advancing stages of maturation were prepared by fractionating, at unit gravity, bone marrow cells from anaemic rabbit. The specific activity of the G6PDH was assayed and plotted vs the fraction number and the typical sigmoid curve of the activity decay was drawn. The separated cells were then grouped in three sets of fractions following the three phases of the sigmoid curve and the fractions of each set were combined. From the cytochemical analysis of the three main fractions so obtained, we found a 25–30% myeloid cell contamination in the first fraction, while in the other two fractions the myeloid contamination was 10% or less. For this reason we performed a rapid separation of the first fraction on a discontinuous percoll gradient. By this method, the myeloid cell contamination of the first fraction was levelled down to the other two. The fractions, so obtained, (I, II and III in order of increasing cell maturation) showed a four fold decrease of glucose-6-phosphate dehydrogenase activity expressed both per cell number and on protein base. On the contrary the concentration of the total soluble proteins did not change significantly in the three fractions.The three purified cellular populations were used to provide information on the protein turnover of the erythroid cells during their development. We measured, in intact cells, the rate of synthesis and degradation of total proteins and then, in cell lysates, we determined the rate of degradation of G6PDH, purified from rabbit RBC and radiolabeled by reductive methylation with C14-formaldehyde. The rates of proteolysis obtained with total proteins and methyl-G6PDH clearly indicate that the proteolytic machinery of the erythroblasts reduces its activity during the cell maturation.  相似文献   

12.
L-Proline is oxidized to pyrroline-5-carboxylic acid in intact plant mitochondria by a proline dehydrogenase (EC 1.4.3) that is bound to the matrix side of the inner mitochondrial membrane (TE Elthon, CR Stewart [1981] Plant Physiol 67: 780-784). This investigation reports the first solubilization of the L-proline dehydrogenase (PDH) from plant mitochondria. The supernatant from NP-40-treated etiolated shoot mitochondria of maize, Zea mays L., reduced iodonitrotetrazolium violet in a proline dependent manner. The pH optimum for this activity was 8. The apparent Km for proline was 6.6 millimolar. When supplied with proline, this solubilized PDH activity also synthesized pyrroline-5-carboxylic acid. The PDH activity was inhibited in vitro by 300 millimolar potassium chloride but not by 300 millimolar potassium acetate. The PDH activity had a molecular mass that was greater than 150 kilodaltons. Mitochondria were prepared from etiolated shoots grown in 100% water-saturated vermiculite (control) and 16% water-saturated vermiculite (stress). The specific activity of solubilized PDH from the stress treatment was 11% of the same activity from the control treatment. Oxygen uptake in the presence of proline and ADP (state 3 proline oxidation) by mitochondria from the stress treatment was 25% of the same rate by mitochondria from the control treatment. Mitochondria were also prepared 16 hours after rewatering the seedlings growing in the stress treatment. Both the solubilized PDH specific activity and state 3 proline oxidation returned to the control levels. The specific activities of the NAD+-dependent pyrroline-5-carboxylic acid dehydrogenase and cytochrome c oxidase in the solubilized preparations were unaffected by these stress and recovery treatments. Oxygen uptake rates by intact mitochondria in the presence of ADP and NADH, succinate or malate-pyruvate were also unaffected by these treatments.  相似文献   

13.
Heart infarction is one of the main causes of death in the human population. Assurance of a sufficient level of bioenergetic processes is very important for the heart after infarction. Mn2+ as well as thiamine pyrophosphate (TPP) are positive effectors of the pyruvate dehydrogenase complex (PDH) and the 2-oxoglutarate dehydrogenase complex (OGDH), both of which play a very important role in the Krebs cycle. Thus, we have established the effect of MnCl2 (10mg/kg) and TPP (20mg/kg)-4 injections every 12 h-on the activity of PDH, OGDH, lactate dehydrogenase (LDH) and malate dehydrogenase (MDH). Additionally, we perform an analysis of ECG to affirm the changes in the heart electrophysiology of healthy rats after MnCl2 and TPP treatment. We then analyzed changes in the activity of these enzymes after experimental myocardial infarction in rats. We observed a decrease of OGDH and MDH activity in rat hearts after infarction in comparison, with sham-operated rats. Treatment of healthy rats with MnCl2 caused an increase of OGDH activity. Moreover both MnCl2 and TPP caused an increase of PDH activity and a decrease of MDH activity (TPP revealed a stronger effect). We found no changes in LDH activity. Electrocardiography data showed a slight shortening of the QT interval and an enhanced heartbeat rate after treatment with MnCl2. TPP caused only elongation of the QT interval. In conclusion, application of MnCl2 enhanced the activity of some very important enzymes in the respiration process (PDH and OGDH). This effect, connected with enhanced heartbeat and a slightly shortened ventricle relaxation, may have potential application during the key period of convalescence following heart infarction.  相似文献   

14.
Samples of the spotted murrel (Channa punctatus) were collected from three rivers of Tamil Nadu and Kerala. The allozyme variation of C. punctatus was investigated by polyacrylamide gel electrophoresis. Eighteen enzymes were detected, but only 10 (EST, PGM, G3PDH, G6PDH, SOD, GPI, ODH, GDH, XDH, and CK) showed consistent phenotypic variations. Allele frequencies were estimated at the 18 polymorphic loci representing 10 enzymes. Two rare alleles, EST-4*C and G6PDH-2*C, were noted in the Tamirabarani and Kallada populations but were absent in the Siruvani population. The allele frequencies of the Tamirabarani and Kallada populations were similar, except for a few loci. Among the three populations, the maximum genetic distance (0.026) and FST (0.203) were found between the geographically distant Siruvani and Kallada populations. Overall the study showed that among the three populations, the Tamirabarani and Kallada have similar genetic structures.  相似文献   

15.
Pyruvate dehydrogenase (PDH), the first component of the human pyruvate dehydrogenase complex, has two isoenzymes, somatic cell-specific PDH1 and testis-specific PDH2 with 87% sequence identity in the alpha subunit of alpha(2) beta(2) PDH. The presence of functional testis-specific PDH2 is important for sperm cells generating nearly all their energy from carbohydrates via pyruvate oxidation. Kinetic and regulatory properties of recombinant human PDH2 and PDH1 were compared in this study. Site-specific phosphorylation/dephosphorylation of the three phosphorylation sites by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) were investigated by substituting serines with alanine or glutamate in PDHs. PDH2 was found to be very similar to PDH1 as follows: (i) in specific activities and kinetic parameters as determined by the pyruvate dehydrogenase complex assay; (ii) in thermostability at 37 degrees C; (iii) in the mechanism of inactivation by phosphorylation of three sites; and (iv) in the phosphorylation of sites 1 and 2 by PDK3. In contrast, the differences for PDH2 were indicated as follows: (i) by a 2.4-fold increase in binding affinity for the PDH-binding domain of dihydrolipoamide acetyltransferase as measured by surface plasmon resonance; (ii) by possible involvement of Ser-264 (site 1) of PDH2 in catalysis as evident by its kinetic behavior; and (iii) by the lower activities of PDK1, PDK2, and PDK4 as well as PDP1 and PDP2 toward PDH2. These differences between PDH2 and PDH1 are less than expected from substitution of 47 amino acids in each PDH2 alpha subunit. The multiple substitutions may have compensated for any drastic alterations in PDH2 structure thereby preserving its kinetic and regulatory characteristics largely similar to that of PDH1.  相似文献   

16.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites.  相似文献   

17.
Summary Chloroplastic (NADP+) glyceraldehyde-3-phosphate dehydrogenase (E.C. 1.2.1.9) catalyzes the second reaction in photosynthesis after the fixation of carbon by RuBisCO. Chloroplast-bound (NADP+) G3PDH was resolved in soybean by starch gel electrophoresis using l-histidine-citrate buffer (pH 5.7). Histochemical staining revealed zymogram patterns indicative of a tetramer. A survey of soybean genotypes revealed differences in zymogram patterns between the principal cytoplasmic sources of the northern and southern US germplasms. In the soybean pedigree, an allelic frequency shift toward a five-banded pattern was observed. G3PDH polymorphism was due to allele associated with gene expression at the slow locus. No linkage was found between the slow locus of (NADP+) G3PDH and AC02, AC03, AC04, ACP, DIA1, IDH1, IDH2, PGM1, and PGM3. Developmental expression in the above-ground tissues was identical, whereas roots as a rule did not express (NADP+) G3PDH activity. The importance of chloroplast-bound (NADP+) G3PDH in photo-synthesis and its interesting mode of inheritance warrants further exploration of this enzyme in soybean.Technical contribution no. 3293 of the South Carolina Agricultural Experiment Station, Clemson University  相似文献   

18.
The reduced coenzyme nicotinamide-adenine dinucleotide phosphate (NADPH) is an important molecule in cellular redox balance. Glucose-6-phosphate dehydrogenase (G6PDH) is a key enzyme in the pentose phosphate pathway, the most important NADPH-generating pathway. In this study, roles of G6PDH in maintaining cell redox balance in rice suspension cells under salt stress were investigated. Results showed that the G6PDH activity decreased in the presence of 80 mM NaCl on day 2. Application of exogenous glucose stimulated the activity of G6PDH and NADPH oxidase under salt stress. Exogenous glucose also increased the ion leakage, thiobarbituric acid reactive substances and hydrogen peroxide (H2O2) contents in the presence of 80 mM NaCl on day 2, implying that the reduction of the G6PDH activity was necessary to avoid serious damage caused by salt stress. The NAPDH/NADP+ ratio increased on day 2 but decreased on day 4 under 80 mM NaCl plus glucose treatment. Diphenyleneiodonium, an NADPH oxidase inhibitor, decreased the H2O2 content under 80 mM NaCl treatment on day 2. These results imply that the H2O2 accumulation induced by glucose treatment under salt stress on day 2 was related to the NADPH oxidase. Western-blot analysis showed that the G6PDH expression was slightly induced by glucose and was obviously blocked by DPI on day 2 under salt stress. In conclusion, G6PDH plays a key role in maintaining the cell redox balance in rice suspension cells under salt stress. The coordination of G6PDH and NADPH oxidase is required in maintaining cell redox balance in salt tolerance.  相似文献   

19.
Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C1 to C8), substituted alkanes, branched-chain alkanes, carbon monoxide, ethers, and cyclic and aromatic compounds. The optimum pH and temperature for the epoxidation of propylene by soluble methane monooxygenase were found to be 7.0 and 40°C, respectively. Among various compounds tested, only NADH2 or NADPH2 could act as an electron donor. Formate and NAD+ (in the presence of formate dehydrogenase contained in the soluble fraction) or 2-butanol in the presence of NAD+ and secondary alcohol dehydrogenase generated the NADH2 required for the methane monooxygenase. Epoxidation of propylene catalyzed by methane monooxygenase was not inhibited by a range of potential inhibitors, including metal-chelating compounds and potassium cyanide. Sulfhydryl agents and acriflavin inhibited monooxygenase activity. Soluble methane monooxygenase was resolved into three components by ion-exchange chromatography. All three compounds are required for the epoxidation and hydroxylation reactions.  相似文献   

20.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号