首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of phenobarbital (100 mg/kg i.p.) and 6-aminonicotinamide (6AN) (35 mg/kg i.p.) on enzyme activities related to energy transduction was investigated on the homogenate in toto, non-synaptic mitochondrial fraction and synaptosomal fraction isolated from different rat brain areas (cerebral cortex, hippocampus, hypothalamus, striatum, and medulla oblongata). 6AN treatment decreased: (a) phosphofructokinase in all the areas tested; (b) lactate dehydrogenase on the homogenate in toto in striatum and hypothalamus, and on the synaptosomal fraction in cerebral cortex and corpus striatum; (c) succinate dehydrogenase on non-synaptic mitochondrial fraction in hippocampus and striatum. Finally, aspartate aminotransferase was increased on non-synaptic mitochondrial fraction in striatum and medulla oblongata. Phenobarbital treatment induced an increase of total NADH cytochrome c reductase on mitochondrial fraction in hippocampus and hypothalamus, and a decrease of cytochrome oxidase activity on non-synaptic mitochondrial fraction in hypothalamus and medulla oblongata.  相似文献   

2.
The activity of ATP-citrate lyase in homogenates of five selected rat brain regions varied from 2.93 to 6.90 nmol/min/mg of protein in the following order: cerebellum < hippocampus < parietal cortex < striatum < medulla oblongata and that of the choline acetyltransferase from 0.15 to 2.08 nmol/min/mg of protein in cerebellum < parietal cortex < hippocampus=medulla oblongata < striatum. No substantial differences were found in regional activities of lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase or acetyl-CoA synthase. High values of relative specific activities for both choline acetyltransferase and ATP-citrate lyase were found in synaptosomal and synaptoplasmic fractions from regions with a high content of cholinergic nerve endings. There are significant correlations between these two enzyme activities in general cytocol (S3), synaptosomal (B) and synaptoplasmic (Bs) fractions from the different regions (r=0.92–0.99). These data indicate that activity of ATP-citrate lyase in cholinergic neurons is several times higher than that present in glial and noncholinergic neuronal cells.  相似文献   

3.
The posttranslational incorporation of arginine into proteins catalyzed by arginyl-tRNA protein transferase was determined in vitro in different rat brain regions. The incorporation was found in all the regions studied, although with different specific activities (pmol [14C]arginine incorporated/mg protein). Of the regions studied, hippocampus had the highest specific activity followed by striatum, medulla oblongata, cerebellum, and cerebral cortex. Electrophoretic analysis of the [14C]arginyl proteins from the different regions followed by autoradiography and scanner densitometry showed at least 13 polypeptide bands that were labeled with [14C]arginine. The radioactive bands were qualitatively coincident with protein bands revealed by Coomassie Blue. There were peaks that showed different proportions of labeling in comparison with peaks of similar molecular mass from total brain. Most notable because of their high proportions were those of molecular mass 125 kDa in hippocampus, striatum, and cerebral cortex; 112 and 98 kDa in striatum and cerebellum; and 33 kDa in hippocampus and striatum. In lower proportions than in total brain were the peaks of 33 kDa in medulla oblongata and cerebral cortex and of 125 kDa in medulla oblongata.  相似文献   

4.
2-Hydroxyputrescine in seven regions of single rat brains was measured with a sensitive, specific assay by gas chromatography-mass spectrometry. The regions were the cerebral cortex, cerebellum, medulla oblongata, hypothalamus, striatum, hippocampus, and midbrain. The level of 2-hydroxyputrescine was very high in the cerebral cortex and cerebellum, high in the medulla oblongata, hypothalamus, and hippocampus, and low in the striatum and midbrain. The level of 2-hydroxyputrescine in the cerebellum was significantly higher than in the striatum and midbrain.  相似文献   

5.
The regional distribution of neuropeptide Y (NPY) immunoreactivity and receptor binding was studied in the porcine CNS. The highest amounts of immunoreactive NPY were found in the hypothalamus, septum pellucidum, gyrus cinguli, cortex frontalis, parietalis, and piriformis, corpus amygdaloideum, and bulbus olfactorius (200-1,000 pmol/g wet weight). In the cortex temporalis and occipitalis, striatum, hippocampus, tractus olfactorius, corpus mamillare, thalamus, and globus pallidus, the NPY content was 50-200 pmol/g wet weight, whereas the striatum, colliculi, substantia nigra, cerebellum, pons, medulla oblongata, and medulla spinalis contained less than 50 pmol/g wet weight. The receptor binding of NPY was highest in the hippocampus, corpus fornicis, corpus amygdaloideum, nucleus accumbens, and neurohypophysis, with a range of 1.0-5.87 pmol/mg of protein. Intermediate binding (0.5-1.0 pmol/mg of protein) was found in the septum pellucidum, columna fornicis, corpus mamillare, cortex piriformis, gyrus cinguli, striatum, substantia grisea centralis, substantia nigra, and cerebellum. In the corpus callosum, basal ganglia, corpus pineale, colliculi, corpus geniculatum mediale, nucleus ruber, pons, medulla oblongata, and medulla spinalis, receptor binding of NPY was detectable but less than 0.5 pmol/mg of protein. No binding was observed in the bulbus and tractus olfactorius and adenohypophysis. In conclusion, immunoreactive NPY and its receptors are widespread in the porcine CNS, with predominant location in the limbic system, olfactory system, hypothalamoneurohypophysial tract, corpus striatum, and cerebral cortex.  相似文献   

6.
Effect of latent iron deficiency on metal levels of rat brain regions   总被引:1,自引:0,他引:1  
Seven different metals (iron, copper, zinc, calcium, manganese, lead, and cadmium) were studied in eight different brain regions (cerebral cortex, cerebellum, corpus striatum, hypothalamus, hippocampus, midbrain, medulla oblongata, and pons) of weaned rats (21-d-old) maintained on an iron-deficient (18-20 mg iron/kg) diet for 8 wk. Iron was found to decrease in all the brain regions, except medulla oblongata and pons, in comparison to their respective levels in control rats, receiving an iron-sufficient (390 mg iron/kg) diet. Brain regions showed different susceptibility toward iron deficiency-induced alterations in the levels of various metals, such as zinc, was found to increase in hippocampus (19%, p less than 0.05) and midbrain (16%, p less than 0.05), copper in cerebral cortex (18%, p less than 0.05) and corpus striatum (16% p less than 0.05), calcium in corpus striatum (22%, p less than 0.01) and hypothalamus (17%, p less than 0.02), and manganese in hypothalamus (18%, p less than 0.05) only. Toxic metals lead and cadmium also increased in cerebellum (19%, p less than 0.05) and hippocampus (17%, p less than 0.05) regions, respectively. Apart from these changes, liver (64%, p less than 0.001) and brain (19%, p less than 0.01) nonheme iron contents were found to decrease significantly, but body, liver, and brain weights, packed cell volume, and hemoglobin content remained unaltered in these experimental rats. Rehabilitation of iron-deficient rats with an iron-sufficient diet for 2 wk recovered the values of zinc in both the hippocampus and mid-brain regions and calcium in the hypothalamus region only. Liver nonheme iron improved significantly; however, no remarkable effect was noticed in brain nonheme iron following rehabilitation. It may be concluded that latent iron deficiency produced alterations in various metal levels in different brain regions, and corpus striatum was found to be the most vulnerable region for such changes. It is also evident that brain regions were resistant for any recovery in their altered metallic levels in response to rehabilitation for 2 wk.  相似文献   

7.
Phospholipase D (PL-D) activity per mg protein of whole homogenate increased 5.1 fold between Embryonic (E) day 17 and Postpartum (P) day 14 and slightly decreased by P 30 days. This was due to the decrease of PL-D activity of the P2 fraction. The PL-D activity of P2 and P3 fractions increased 11.2 and 6.1 fold respectively between E 17 and P 14. The 3 base exchange enzyme (BEE) activities per mg protein of whole homogenate increased up to P 14 or P 21 and then decreased. This decrease was greater in the P2 fraction and the P3 fraction increased after P14. Brains from 1 day to 25 month old rats were dissected into 7 separate regions and both PL-D and BEE activities were measured. In adult rats, the hippocampus and hypothalamus had the highest PL-D activities while medulla+pons and cerebellum had the lowest PL-D activities. The developmental patterns of 5 regions except for hippocampus and hypothalamus were similar. PL-D activity in the hippocampus was maximum at P 7 followed by a steep decrease till P30 suggesting that the PL-D activity of the hypothalamus develops later and that of the hippocampus develops earlier than any other region. The distributions of BEE activities were quite different from those of PL-D activities. In adult rats, the cerebellum had the highest activity while the striatum and medulla+pons had the lowest. The BEE activities of cerebellum were lowest at P 1 and showed steep increase during the next 2 weeks.To whom to address reprint request are to be sent.  相似文献   

8.
The effects of aminooxyacetic acid (AOAA), a transaminase inhibitor, and 2-oxoglutarate, a precursor to glutamate by the activity of aspartate aminotransferase (AAT), on slices of rat medulla oblongata, cerebellum, cerebral cortex, and hippocampus were studied. The slices were superfused and electrically stimulated. There was a Ca2+-dependent stimulus-evoked release of endogenous glutamate, gamma-aminobutyric acid (GABA), and beta-alanine in all regions examined. AOAA (10(-4) and 10(-3) M) decreased the release of glutamate in the medulla oblongata and cerebellum but not in the hippocampus. L-Canaline, a specific inhibitor of ornithine aminotransferase, did not affect the glutamate release in the medulla. 2-Oxoglutarate (10(-3) M) increased the release of glutamate in the medulla oblongata and cerebellum but not in the cerebral cortex and hippocampus. Treatment with AOAA (10(-4) M) almost abolished the activities of AAT in all regions studied. AOAA (10(-4) and 10(-3) M) increased the stimulus-evoked release of GABA in the cerebellum, cerebral cortex, and hippocampus, whereas the stimulus-evoked release of beta-alanine was decreased by this agent in all regions studied. These results suggest the participation of AAT in the synthesis of the transmitter glutamate in the medulla oblongata and cerebellum of the rat.  相似文献   

9.
Regional Distribution of Kininase in Rat Brain   总被引:1,自引:1,他引:0  
Kininase activity, which inactivates kinins, was measured in seven regions of the rat brain (i.e., the cerebral cortex, cerebellum, striatum, midbrain, hippocampus, hypothalamus, medulla oblongata), and in the spinal cord with a bioassay method using bradykinin as the substrate. Specific kininase activities in the cerebellum and striatum were higher than those in the other five regions or the spinal cord. Angiotensin-converting enzyme activity, which was measured fluorometrically using Hip-His-Leu as substrate, showed high activity in the striatum and cerebellum. These findings suggest that the presence of high concentrations of peptidases plays a role in the degradation of kinins and/or other peptides in these areas.  相似文献   

10.
The effect of bilateral cerebral ischemia on noradrenaline, dopamine, and serotonin concentrations in six brain regions (i.e., the cerebral cortex, striatum, hippocampus, midbrain-diencephalon, cerebellum, and pons-medulla oblongata) was examined in the gerbil stroke model. The relative changes in regional cerebral blood flow after bilateral common carotid occlusion were also assessed using the radioactive microsphere technique. At 1 h after bilateral carotid occlusion, a significant decrease of monoamine concentration was observed in the cerebral cortex, striatum, hippocampus, and midbrain-diencephalon whereas no significant change was detected in the cerebellum and pons-medulla oblongata. The fall in NA content was most prominent in the cerebral cortex and hippocampus and percentage reductions of dopamine and serotonin were greatest in the striatum and cerebral cortex, respectively. These results suggest that the monoamine neurons in various brain regions might have different vulnerabilities to ischemic insult and show no evidence of transtentorial diaschisis.  相似文献   

11.
Stimulation of soluble guanylyl cyclase and increase in cyclic GMP in rat fetal lung fibroblasts (RFL-6 cells) was used as a bioassay to detect EDRF/NO formation. The cytosolic fraction of whole rat brain synthesized an EDRF/NO-like material in a process dependent on L-arginine and NADPH. The enzymatic activity was destroyed by boiling and inhibited by N omega-nitro-L-arginine. Hemoglobin and methylene blue blocked the effect of EDRF/NO. When different brain regions were analyzed in the presence of L-arginine and NADPH, the cytosolic fraction from cerebellum showed the highest EDRF/NO-forming activity (2-3 times higher than whole brain). Activity similar to whole brain was found in hypothalamus and midbrain. Enzymatic activities in striatum, hippocampus and cerebral cortex were about two thirds of whole brain. The lowest activity (less than half of whole brain) was found in the medulla oblongata.  相似文献   

12.
Abstract— Gamma-hydroxybutyric acid is a neuroactive compound which has been found to be a normal constituent of mammalian brain. The present report characterized enzymatic activity in brain forming gamma-hydroxybutyrate (GHB) from succinic semialdehyde (SSA). When NADPH served as cofactor, whole brain homogenate was capable of forming nearly 300 nmol GHB/min/g brain when enzyme activity was measured at 37°C. GHB production was significantly less (50%) when NADH was the cofactor. A regional localization of these activities indicated that the cerebellum and septal area contained the highest capacity to form GHB in the presence of NADPH; intermediate to high activity was found in the cortex, medulla, superior colliculus and corpus striatum; low activity was present in the inferior colliculus, thalamus, pons, hippocampus, substantia nigra and hypothalamus. Activity in the presence of NADH was rather evenly distributed with the exceptions of the cerebellum and inferior colliculus, which contained high and low activity respectively. Both NADPH- and NADH-dependent activities were found primarily in the cytosol. Pentobarbital inhibited enzyme activity and enzyme activity was differentiated from lactic dehydrogenase and alcohol dehydrogenase by use of specific inhibitors. In addition, mixed substrate experiments and kinetic analysis provided evidence for the presence of two reversible NADPH-dependent enzymes capable of producing GHB from SSA.  相似文献   

13.
The acetylcholinesterase (AChE) activity is studied in rat slices of the cerebral cortex, corpus striatum, hypothalamus and medulla oblongata of rats during hypothermia (20 degrees C) and also 1 and 7 days after the posthypothermal period. Cooling of animals down to 20 degrees C is accompanied by an increase in the AChE activity in the brain both under incubation temperature of 20 degrees and 37 degrees C. Under prolonged hypothermia the AChE activity in the investigated brain regions, except for corpus striatum, returns to the control level. By the 7th day of posthypothermal period the AChE activity in corpus striatum, hypothalamus and medulla oblongata does not restore completely. The most substantial changes in the AChE activity both under hypothermia and posthypothermal period occur in corpus striatum, which obviously reflects its complicated functional role.  相似文献   

14.
Z Pittel  A Fisher  E Heldman 《Life sciences》1989,44(20):1437-1448
The effect of ethylcholine aziridinium ion (AF64A) after an intracerebroventricular (icv) injection was compared to that obtained after an intravascular administration. Reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities in the hippocampus but not in the cerebral cortex or the corpus striatum were observed 10 days after bilateral injection of AF64A into the rat cerebroventricles (3 nmol/side). However, when AF64A was injected into the carotid artery (1 mumol/kg) following a unilateral opening of the blood-brain barrier by a hypertonic treatment, a significant decrease in ChAT activity was observed in the ipsilateral side of the cerebral cortex but not in hippocampus, corpus striatum, or cerebellum. High-affinity choline transport was reduced significantly 11 days after an icv injection of AF64A in all the above mentioned brain regions, and recovered 60 days post injection in the cerebral cortex and in the corpus striatum but not in the hippocampus. Our results suggest that in various brain regions, AF64A causes various degrees of damage to cholinergic neurons, depending on the quantity of the toxin that reaches the target tissue.  相似文献   

15.
The development of several key enzymes of pyruvate and 3-hydroxybutyrate metabolism and of the tricarboxylic acid cycle was studied in six regions (cerebellum, medulla oblongata and pons, hypothalamus, striatum, mid-brain and cortex) of the neonatal, suckling and adult rat brain (2 days before birth to 60 days after birth). The enzymes whose developmental patterns were studied were: pyruvate dehydrogenase (EC 1.2.4.1), 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), citrate synthase (EC 4.1.3.7), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and fumarase (EC 4.2.1.2). Citrate synthase, isocitrate dehydrogenase and pyruvate dehydrogenase develop as a cluster in each region, although the pyruvate dehydrogenase appears to lag slightly behind the others. As with the glycolytic-enzyme cluster [Leong & Clark (1984) Biochem. J. 218, 131-138] the timing of the development of the activity of this group of enzymes varies from region to region; 50% of the adult activity developed first in the medulla oblongata, followed by the hypothalamus, striatum and mid-brain, and then in the cortex and cerebellum respectively. The 3-hydroxybutyrate dehydrogenase activity also develops earlier in the medulla oblongata than in the other regions. The results are discussed with respect to the neurophylogenetic development of the brain regions studied and the importance of the development of the enzymes of aerobic glycolysis in relationship to the development of neurological maturation.  相似文献   

16.
Regional Development of Glutamate Dehydrogenase in the at Brain   总被引:1,自引:0,他引:1  
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.  相似文献   

17.
The intraventricular and intravenous administration of naloxone was studied for its effect on the homocarnosine amount in cerebral hemispheres, striatum, hippocamp, hypothalamus, thalamus, cerebellum, medulla oblongata as well as in the spinal cord of rabbits. The intracysternal administration of naloxone decreases the homocarnosine amount in the striatum, hypothalamus, cerebellum and medulla oblongata. The intravenous administration of peptide exerts no statistically reliable effect on the homocarnosine content in the rabbit brain. The intraperitoneal administration of delta-sleep-inducing peptide increases sharply the homocarnosine content in the rat brain.  相似文献   

18.
The NGF content in each region of the brain of four-week-old rats was ranked in the decreasing order of cerebral cortex, hippocampus, cerebellum, midbrain/diencephalon, and pons/medulla ob-longata, and the NGF concentration, in the decreasing order of hippocampus, cerebral cortex, cerebellum, midbrain/diencephalon, and pons/medulla oblongata in both AFD and SFD groups. The NGF content and concentration in the cerebral cortex were about the same value at each age between those in the AFD and SFD groups. Those in the hippocampus were a little higher in the SFD group than in the AFD group at the ages of three and four weeks, unlike those in the other regions, where the values for the cerebellum, midbrain/diencephalon and pons/medulla oblongata tended to be somewhat higher in the AFD group than in the SFD group. The NGF concentrations in the hippocampus and cerebral cortex increased with growth: the concentration in the hippocampus at four weeks of age was about 4-fold of that at one week in the AFD group and about 5.7-fold of that at one week in the SFD group; and likewise the concentration in the cerebral cortex at four weeks of age was about 5.3-fold in the AFD group and about 7-fold in the SFD group. The NGF concentrations in the cerebellum decreased, and those in midbrain/diencephalon and pons/medulla oblongata hardly changed with growth in either AFD or SFD group. From these results NGF may have stronger implications for the neuronal growth in the hippocampus compared with those in the lower brain regions of the SFD rats.  相似文献   

19.
Catechol-O-methyl transferase (COMT) activities determined in different regions of rat brain showed small variations. Highest activities were found in the hypothalamus and corpora quadrigemina, and lowest activities in the hippocampus and corpus striatum. The regional distribution of COMT was thus at variance with the distribution of DOPA decar- boxylase in this study and with the distribution of catecholamines and tyrosine hydroxylase reported in the literature. Determinations of the subcellular distribution of COMT in rat forebrain showed that 50 per cent of the activity was recovered in the high speed supernatant fluid and about 33 per cent in the crude mitochondrial fraction. Further separation of the latter by discontinuous sucrose gradients showed that the particulate COMT was found in the synaptosomal fraction in an occluded form. Full enzyme activity was only obtained after treatment with a detergent or after resuspension in water. After hypo-osmotic rupture of the crude mitochondrial fraction, COMT was recovered in the cytoplasmic fraction. The subcellular distribution of COMT was very similar to the ones of lactate dehydrogenase and DOPA decarboxylase. The proportions of soluble COMT obtained from homogenates of various regions of the brain differed from that of choline acetyl transferase and DOPA decarboxylase but were similar to that of lactate dehydrogenase. In conclusion, COMT is a cytoplasmic enzyme almost evenly distributed in the CNS. Its distribution does not resemble the distributions of the catecholamines or of the enzymes participating in the synthesis of catecholamines.  相似文献   

20.
The activities of RNA polymerase I and II were assayed in nuclei isolated from different regions (cerebral cortex, cerebellum, hypothalamus, hippocampus, corpus striatum and pituitary) of brains from young (10 days), adult (6 months), and old (2 years) rats. The RNA polymerases I and II activities generally increased during maturation, i.e., from 10 days to 6 months of postnatal age and then showed a decrease from 6 months to 2 years of age in all the regions except in cerebral cortex where the RNA polymerase II activity was highest at 10 days but showed a gradual decrease through the lifespan up to 2 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号