首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 448 毫秒
1.
论述了大气CO2浓度和温度升高下的植物生长、光合作用、产量以及水分养分利用效率等方面的研究进展.未来高CO2浓度下,光合作用速率有不同程度的提高,生物量和产量增加;气孔导度降低,水分利用效率(WUE)提高;一般地上部分和根系尤其是细根生物量增加,凋落物量随之增加,C/N比率提高,植物残体的腐解速率降低.CO2浓度升高后,会给根际微生物带来更多的底物,从而提高了微生物活性,加速养分的矿化过程,改善植物的养分状况.  相似文献   

2.
 本文针对国外近十几年来在CO2浓度升高对植物的直接影响方面所开展的生理生态学研究方法、动态、基本结论、存在问题等内容做了简要的介绍。大气CO2浓度在过去200年内已增加了80μmol·mol-1,生长在高CO2环境下的植物,其生理生态、形态及化学成分等方面将会发生相应的变化。表现在光合作用速率出现不同程度的提高;呼吸作用受抑制;气孔密度减少,水分利用效率增加;生物量及产量增加;一些关键蛋白质及酶、非结构性碳水化合物含量增加;组织中的氮、硫等元素含量降低;根系及花的发育也随CO2浓度的升高而提前等。不同光合途径(C3、C4及CAM)及不同植被类型(自然植被、栽培植被)的植物随CO2浓度发生的上述指标的变化在长期反应与短期反应方面具有很大的差异。另外,实验控制条件如温度、光照、水分、养分甚至实验装置(如花盆)的大小对预测结果也有很大的影响。  相似文献   

3.
 本文针对国外近十几年来在CO2浓度升高对植物的直接影响方面所开展的生理生态学研究方法、动态、基本结论、存在问题等内容做了简要的介绍。大气CO2浓度在过去200年内已增加了80μmol·mol-1,生长在高CO2环境下的植物,其生理生态、形态及化学成分等方面将会发生相应的变化。表现在光合作用速率出现不同程度的提高;呼吸作用受抑制;气孔密度减少,水分利用效率增加;生物量及产量增加;一些关键蛋白质及酶、非结构性碳水化合物含量增加;组织中的氮、硫等元素含量降低;根系及花的发育也随CO2浓度的升高而提前等。不同光合途径(C3、C4及CAM)及不同植被类型(自然植被、栽培植被)的植物随CO2浓度发生的上述指标的变化在长期反应与短期反应方面具有很大的差异。另外,实验控制条件如温度、光照、水分、养分甚至实验装置(如花盆)的大小对预测结果也有很大的影响。  相似文献   

4.
28种园林植物对大气CO2浓度增加的生理生态反应   总被引:6,自引:0,他引:6  
通过对28种园林植物在不同CO2浓度水平下的气体交换参数的观测,分析了净光合速率、气孔导度、蒸腾速率和水分利用效率等生理生态指标的变化趋势与规律.结果表明,所测植物净光合速率和水分利用效率随CO2浓度升高而线性增加,但不同植物种类对高CO2浓度的反应存在较大差异.气孔导度和蒸腾速率与CO2浓度呈线性负相关关系.当CO2浓度倍增(350~700 μmol·mol-1)时,28种园林植物净光合速率平均提高31.2%,气孔导度降低16.5%,蒸腾速率下降11.7%,而水分利用效率则提高了49.2%.不同光合途径的植物净光合速率和水分利用效率受CO2浓度增加的影响程度为C3植物较大,C4植物较小, CAM植物介于两者之间.对不同生活型植物而言,影响程度则为草本C3植物较大,乔木C3植物较小,灌木C3植物居于两者之间.  相似文献   

5.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

6.
CO2浓度升高对两个种植密度下红桦生长和养分含量的影响   总被引:3,自引:3,他引:0  
采用控制环境生长室,研究了CO2浓度升高对2个种植密度下红桦幼苗生长和氮(N)、磷(P)含量的影响。试验设置CO2浓度为350和700μmol.mol-12个水平,每个CO2浓度水平下又设密度28和84株.m-22个水平。结果表明:CO2浓度升高,红桦株高和叶面积指数(LAI)均增加,净同化率(NAR)值增加,叶质比(LMR)和比叶面积(SLA)均下降,但相对生长率(RGR)提高。CO2浓度增加,红桦幼苗茎枝、叶、根和总生物量提高,氮(N)、磷(P)含量降低,但单株N、P总吸收量均增加。CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。CO2浓度升高,红桦幼苗体内N、P浓度下降是由于生物量迅速增加引起的稀释效应造成的,而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。CO2浓度升高导致的植物生长的增加量会随植株密度的增加而降低,不同器官养分吸收量的增加量在低密度条件下比高密度条件下大得多,主要是因为高种植密度显著降低了植株各部位的干质量。  相似文献   

7.
干旱区胡杨光合作用对高温和CO2浓度的响应   总被引:6,自引:0,他引:6  
采用LI-6400便携式光合作用测定仪实测的塔里木河下游胡杨(Populus euphratica oliv)光合作用参数,探讨了不同地下水埋深下的胡杨光合作用对CO2浓度增加和温度升高的响应.结果表明:(1)CO2浓度升高减小了胡杨气孔导度,促进了光合速率、胞间CO2浓度和水分利用效率的增加,但不同地下水埋深下,胡杨光合作用参数对CO2浓度升高的响应不同,干旱环境(地下水埋深较深)下的响应程度大于水分适宜(地下水埋深浅)环境下的响应;(2) 高温引起胡杨气孔发生不完全关闭,导致了光合作用的光抑制发生,从而降低了胡杨光合速率,但降低程度受水分条件的影响,地下水埋深较深环境下的影响程度大于地下水埋深浅的;(3)地下水埋深是控制干旱区胡杨光合作用对CO2浓度和温度升高的根本因素,6m是胡杨生长正常的临界地下水埋深,地下水埋深>6m,胡杨即遭到水分胁迫,地下水埋深>7m,胡杨即受到了较严重的水分胁迫.  相似文献   

8.
孟凡超  张佳华  郝翠  周正明  李辉  刘丹  王凯  张华 《生态学报》2015,35(7):2126-2135
CO2和水分是植物光合作用的重要底物,大气CO2浓度升高或水分变化影响植物光合作用。玉米是重要的C4植物,目前已成为我国第一大作物。我国东北地区的玉米产量占全国玉米产量的1/3左右,对确保国家的粮食安全具有重要作用。但是,关于CO2浓度升高或水分变化共同作用对东北玉米的光合速率、水分利用效率和产量影响的研究甚少。基于开顶式生长箱(OTCs),模拟研究了CO2浓度变化(390、450、550μmol/mol)和降水变化(0、+15%(以试验地锦州1981—2010年6、7、8月月平均降水量88.7,153.9 mm和139.8 mm为基准))共同作用对玉米光合特性及产量的影响。以玉米品种丹玉39为材料,利用直角双曲线修正模型对6个处理(C550W+15%、C550W0、C450W+15%、C450W0、C390W+15%和C390W0)的光响应曲线进行了拟合。结果表明:在CO2浓度升高和灌溉的共同作用下,玉米叶片净光合速率(Pn)升高,且灌溉作用大于高CO2浓度作用;而蒸腾速率(Tr)则下降,使水分利用效率(WUE)升高。CO2浓度升高使气孔导度(Gs)降低,灌溉则使之升高,但灌溉的作用小于高CO2浓度作用;胞间CO2浓度(Ci)随CO2浓度增加而升高,灌溉对其影响不明显。高CO2浓度和灌溉共同作用下光响应参数差异明显。CO2浓度升高增加了最大净光合速率(Pnmax)和光饱和点(LSP),灌溉亦然;CO2浓度升高使得光补偿点(LCP)、光补偿点量子效率(φc)和暗呼吸速率(Rd)的灌溉处理和自然降水处理的差距变小。390、450、550μmol/mol CO2浓度下的灌溉处理与自然降水处理相比,叶面积分别增加了11.56%、3.31%和0.45%,干物质积累量分别增加了14.69%、8.09%和1.01%,最终使产量分别增加了10.47%、12.07%和8.96%。可见,在高CO2浓度下,适量的灌溉对玉米的整个光合作用过程起到了促进作用,最终表现为籽粒产量的增加。为研究者评估气候变化对中国东北地区作物光合能力和产量的影响及决策者调整适应气候变化措施方面提供依据。  相似文献   

9.
CO2浓度升高和干旱对春小麦生长和水分利用的生态效应   总被引:6,自引:0,他引:6  
利用开顶式气室对春小麦进行了一个生长季的CO2倍增盆栽实验,土壤水分控制为3个水平(分别为田间持水量(FWC)的80%,60%,40%)。结果显示,CO2倍增显提高小麦的光合速率。但在相同的CO2测定浓度下,生长在加倍CO2浓度下的小麦的光合速率比当前CO2浓度下小麦低22%。高CO2浓度显促进小麦生长,相对增加幅度在适宜水分下最大为14.8%。80%FWC水分条件下高CO2使植株的干重/高度比增加15.7%,高CO2条件下,小麦的蒸腾速率降低,累积耗水量减少,水分利用效率(WUE)提高,WUE的提高幅度在适宜水分下最大,为30%。干旱(40%FWC)使小麦地上干重和WUE在当前CO2条件下分别降低72%和19%,加倍CO2条件下降低幅度较大,分别为76%和23%。根据以上结果得出结论:(1)高CO2条件下,小麦的光合速率,地上生物量和水分利用效率提高;(2)植物长期生长于高CO2浓度导致光合能力降低;(3)高CO2对植物侧向生长的促进作用大于垂直生长,即高CO2下植株将相对粗壮;(4)高CO2对植物的生态效应依赖于土壤水分,在适宜水分下相对较大;(4)在未来高CO2条件下,干旱引起的减产和水分利用效率减低幅度将会更大。  相似文献   

10.
利用开顶式气室对春小麦进行了一个生长季的CO2倍增盆栽实验,土壤水分控制为3个水平(分别为田间持水量(FWC)的80%、60%、40%).结果显示,CO2倍增显著提高小麦的光合速率.但在相同的CO2测定浓度下, 生长在加倍CO2浓度下的小麦的光合速率比当前CO2浓度下小麦低22%.高CO2浓度显著促进小麦生长,相对增加幅度在适宜水分下最大,为14.8%.80%FWC水分条件下高CO2使植株的干重/高度比增加15.7%.高CO2条件下,小麦的蒸腾速率降低、累积耗水量减少、水分利用效率(WUE)提高,WUE的提高幅度在适宜水分下最大,为30%.干旱(40%FWC)使小麦地上干重和WUE在当前CO2条件下分别降低72%和19%,加倍CO2条件下降低幅度较大,分别为76%和23%.根据以上结果得出结论: (1) 高CO2条件下, 小麦的光合速率、地上生物量和水分利用效率提高;(2) 植物长期生长于高CO2浓度导致光合能力降低;(3) 高CO2对植物侧向生长的促进作用大于垂直生长,即高CO2下植株将相对粗壮;(4) 高CO2对植物的生态效应依赖于土壤水分,在适宜水分下相对较大;(5) 在未来高CO2条件下,干旱引起的减产和水分利用效率减低幅度将会更大.  相似文献   

11.
CO2浓度升高对植物-土壤系统地下部分碳流通的影响   总被引:12,自引:1,他引:11  
目前 ,由于化石燃料的燃烧和土地利用的改变 ,每年释放到大气中的碳大约有 7Gt[2 4 ] ,其中 ,有 3Gt留在大气中 ,2Gt被固定在深海中 ,另 2Gt被植物固定在生态系统中[19,4 8] ,事实上 ,陆地生态系统中的碳大部分都贮存在土壤中[4 4 ] ,所以植物与土壤之间的碳流通对全球碳循环极为重要。大气CO2 浓度升高有可能通过生态系统中的各种生理过程来改变植物 -土壤系统中碳通量的变化 ,使输入土壤的碳量增加 ,另一方面 ,地下部分碳通量的增加使土体成为一个潜在的碳汇 ,有可能缓解大气中CO2 浓度的升高。但有关高CO2 对地下部分植物…  相似文献   

12.
Ferreira V  Chauvet E 《Oecologia》2011,167(1):279-291
The predicted increase in atmospheric CO(2) concentration for this century is expected to lead to increases in temperature and changes in litter quality that can affect small woodland streams, where water temperature is usually low and allochthonous organic matter constitutes the basis of the food web. We have assessed the individual and interactive effect of water temperature (5 and 10°C) and alder litter quality produced under ambient CO(2) levels (ambient litter) or under CO(2) concentrations predicted for 2050 (elevated litter) on litter decomposition and on fungal activity and assemblage structure. Litter decomposition rates and fungal respiration rates were significantly faster at 10 than at 5°C, but they were not affected by litter quality. Litter quality affected mycelial biomass accrual at 5 but not at 10°C, while increases in temperature stimulated biomass accrual on ambient but not on elevated litter. A similar pattern was observed for conidial production. All variables were stimulated on elevated litter at 10°C (future scenario) compared with ambient litter at 5°C (present scenario), but interactions between temperature and litter quality were additive. Temperature was the factor that most strongly affected the structure of aquatic hyphomycete assemblages. Our results indicate that if future increases in atmospheric CO(2) lead to only slight modifications in litter quality, the litter decomposition and fungal activities and community structure will be strongly controlled by increased water temperature. This may have serious consequences for aquatic systems as faster litter decomposition may lead to food depletion for higher trophic levels.  相似文献   

13.
Our understanding of the effects of elevated atmospheric CO2, singly and In combination with other environmental changes,on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii Vitman. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, whereas drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated COz increased biomass while ameliorating biomass decreases that were induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure.We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass,which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses,which should then Influence soil resources and plant and ecosystem function.  相似文献   

14.
草地植物根系碳储量和碳流转对CO2浓度升高的响应   总被引:2,自引:0,他引:2  
吴伊波  崔骁勇 《生态学报》2009,29(1):378-388
植物根系是陆地生态系统重要的碳汇和矿质养分库,也是土壤中碳及养分的主要来源,只有深入认识CO2浓度升高下根系的碳汇功能和根系周转对土壤碳库的影响,才能准确预测生态系统对全球变化的响应与反馈调节作用.介绍了CO2浓度升高对草地植物根系生物量、根系凋落物的数量和品质以及根系周转速率的影响,指出研究植物体内碳向根分配格局的变化趋势必须考虑CO2浓度升高的直接和间接两方面作用;在预测根系碳库储量的动态变化时,需要区分不同功能根系组分的生物量;为更准确估算根系周转速率,有必要确立草地植物根系直径与其寿命之间的关系;CO2浓度升高普遍提高根系凋落物的C/N,但以此判定其在土壤中的分解速率快慢并不可靠,需要进一步从机理上探究根系凋落物分解的控制因素.  相似文献   

15.
Growth and wood and bark properties of Abies faxoniana seedlings after one year's exposure to elevated CO2 concentration (ambient 350 (=1= 25) μmol/mol) under two planting densities (28 or 84 plants/mz) were investigated in closed-top chambers. Tree height, stem diameter and cross-sectional area, and total biomass were enhanced under elevated CO2 concentration, and reduced under high planting density. Most traits of stem bark were improved under elevated CO2 concentration and reduced under high planting density. Stem wood production was significantly increased in volume under elevated CO2 concentration under both densities, and the stem wood density decreased under elevated CO2 concentration and increased under high planting density. These results suggest that the response of stem wood and bark to elevated CO2 concentration is density dependent. This may be of great importance in a future CO2 enriched world in natural forests where plant density varies considerably. The results also show that the bark/wood ratio in diameter, stem cross-sectional area and dry weight are not proportionally affected by elevated CO2 concentration under the two contrasting planting densities. This indicates that the response magnitude of stem bark and stem wood to elevated CO2 concentration are different but their response directions are the same.  相似文献   

16.
高浓度二氧化碳对植物影响的研究进展   总被引:19,自引:0,他引:19  
工业革命后全球大气CO2浓度持续上升,不仅对全球气候的变迁产生重大影响,而且对植物的形态、水分利用、蛋白质合成、光合、抗性、生长及生物量等都有不同程度的影响。高浓度CO2促进植物根、幼苗的生长,叶片增厚,降低气孔密度、气孔导度及蒸腾速率,增加水分利用效率、作物的产量及生物量,促进乙烯生物合成,增强植物的抗氧化能力。不同光合途径(C3、C4及CAM)及不同植被类型的植物对高浓度CO2的响应不同。长期和短期的高浓度CO2处理,植物响应方式有很大的差异,如短期高CO2处理使光合能力增强,而长期处理则使光合能力下调。  相似文献   

17.
Elevated CO2, rhizosphere processes,and soil organic matter decomposition   总被引:12,自引:0,他引:12  
Cheng  Weixin  Johnson  Dale W. 《Plant and Soil》1998,202(2):167-174
The rhizosphere is one of the key fine-scale components of C cycles. This study was undertaken to improve understanding of the potential effects of atmospheric CO2 increase on rhizosphere processes. Using C isotope techniques, we found that elevated atmospheric CO2 significantly increased wheat plant growth, dry mass accumulation, rhizosphere respiration, and soluble C concentrations in the rhizosphere. When plants were grown under elevated CO2 concentration, soluble C concentration in the rhizosphere increased by approximately 60%. The degree of elevated CO2 enhancement on rhizosphere respiration was much higher than on root biomass. Averaged between the two nitrogen treatments and compared with the ambient CO2 treatment, wheat rhizosphere respiration rate increased 60% and root biomass only increased 26% under the elevated CO2 treatment. These results indicated that elevated atmospheric CO2 in a wheat-soil system significantly increased substrate input to the rhizosphere due to both increased root growth and increased root activities per unit of roots. Nitrogen treatments changed the effect of elevated CO2 on soil organic matter decomposition. Elevated CO2 increased soil organic matter decomposition (22%) in the nitrogen-added treatment but decreased soil organic matter decomposition (18%) without nitrogen addition. Soil nitrogen status was therefore found to be important in determining the directions of the effect of elevated CO2 on soil organic matter decomposition.  相似文献   

18.
The effect of ambient and elevated atmospheric CO(2) on biomass partitioning and nutrient uptake of mycorrhizal and non-mycorrhizal pea plants grown in pots in a controlled environment was studied. The hypothesis tested was that mycorrhizae would increase C assimilation by increasing photosynthetic rates and reduce below-ground biomass allocation by improving nutrient uptake. This effect was expected to be more pronounced at elevated CO(2) where plant C supply and nutrient demand would be increased. The results showed that mycorrhizae did not interact with atmospheric CO(2) concentration in the variables measured. Mycorrhizae did not affect photosynthetic rates, had no effect on root weight or root length density and almost no effect on nutrient uptake, but still significantly increased shoot weight and reduced root/shoot ratio at harvest. Elevated CO(2) increased photosynthetic rates with no evidence for down-regulation, increased shoot weight and nutrient uptake, had no effect on root weight, and actually reduced root/shoot ratio at harvest. Non-mycorrhizal plants growing at both CO(2) concentrations had lower shoot weight than mycorrhizal plants with similar nutritional status and photosynthetic rates. It is suggested that the positive effect of mycorrhizal inoculation was caused by an enhanced C supply and C use in mycorrhizal plants than in non-mycorrhizal plants. The results indicate that plant growth was not limited by mineral nutrients, but partially source and sink limited for carbon. Mycorrhizal inoculation and elevated CO(2) might have removed such limitations and their effects on above-ground biomass were independent, positive and additive.  相似文献   

19.
Cui M  Miller PM  Nobel PS 《Plant physiology》1993,103(2):519-524
CO2 uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO2 concentrations of 370, 520, and 720 [mu]L L-1 in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO2 uptake for basal cladodes at 520 and 720 [mu]L L-1 of CO2 was 76 and 98% higher, respectively, than at 370 [mu]L L-1. Eight weeks after daughter cladodes emerged, their daily net CO2 uptake was 35 and 49% higher at 520 and 720 [mu]L L-1 of C02, respectively, than at 370 [mu]L L-1. Daily water-use efficiency was 88% higher under elevated CO2 for basal cladodes and 57% higher for daughter cladodes. The daily net CO2 uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO2 uptake caused by elevated CO2 was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L-1 of CO2, respectively, compared with 370 [mu]L L-1. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L-1 of CO2 was 21 and 55% higher, respectively, than at 370 [mu]L L-1. The root dry weight nearly tripled as the C02 concentration was doubled, causing the root/shoot ratio to increase with CO2 concentration. During the 23-week period, elevated CO2 significantly increased CO2 uptake and biomass production of O. ficus-indica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号