首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The DNA binding affinity of Alba, a chromatin protein of the archaeon Sulfolobus solfataricus P2, is regulated by acetylation of lysine 16. Here we identify an acetyltransferase that specifically acetylates Alba on this residue. The effect of acetylation is to lower the affinity of Alba for DNA. Remarkably, the acetyltransferase is conserved not only in archaea but also in bacteria where it appears to play a role in metabolic regulation. Therefore, our data suggest that S. solfataricus has co-opted this bacterial regulatory system to generate a rudimentary form of chromatin regulation.  相似文献   

8.
9.
10.
11.
12.
High mobility group box (HMGB) proteins 1 and 2 are abundant non-histone nuclear proteins that regulate chromatin structure because of their structure-specific binding to DNA. Here, we have investigated how the post-synthetic acetylation of HMGB1 affects its interaction with negatively supercoiled DNA by employing monoacetylated at Lys2 protein, isolated from butyrate-treated cells. Our data reveal that this modification enhances three reaction parameters: binding affinity, supercoiling activity and capacity to protect the supercoiled DNA from relaxation by topoisomerase I. We show that monoacetylation at Lys2 mimics the effect of acidic tail removal but to a lesser extent thus demonstrating that in vivo acetylated HMGB1 is capable of modulating its interaction with negatively supercoiled DNA.  相似文献   

13.
Li Q  Zhou H  Wurtele H  Davies B  Horazdovsky B  Verreault A  Zhang Z 《Cell》2008,134(2):244-255
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Baicalin is a flavonoid known to modify various redox-related biological activities. Included is its ability to suppress reactive species (RS) producing activity and modulate nuclear factor-κB through cellular redox regulation with enhanced thiol ability. FoxO regulates various genes that are known to be involved in cellular metabolism related to cell death and the oxidative stress response. One such case is the prevention of FoxO1 expression by activated insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt, which leads to increased oxidative stress and aging processes. In the present study, we attempted to elucidate the molecular modulation of antioxidant baicalin on the insulin-induced FoxO1 inactivation. We used HEK293T cultured cells and kidney tissue isolated from 24-month-old rats treated with baicalin at a dose of 10 or 20 mg/kg/day for 10 days. We found that baicalin enhanced catalase and suppressed RS production in cell system and in isolated kidney tissue in contrast to the nontreated aged rats. Results also showed activation of insulin signaling (PI3K/Akt), FoxO1 phosphorylation/acetylation and the down-regulation of catalase and manganese superoxide dismutase, both of which are FoxO1-targeting genes. Furthermore, baicalin-treated rats showed a decreased FoxO1 phosphorylation via PI3K/Akt cascade and FoxO1 acetylation by the cAMP-response element-binding protein binding protein (CBP). These results strongly suggest that treatment with baicalin influenced phosphorylation/acetylation of FoxO1 by up-regulating PI3K/Akt signaling through insulin in aged rats. Our results further reveal that baicalin regulated FoxO1 phosphorylation via PI3K/Akt by insulin and FoxO1 acetylation by the interaction of CBP and SIRT1, leading to changes in catalase gene expression during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号