首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The hallmark of many intracellular pore blockers such as tetra-alkylammonium compounds and local anesthetics is their ability to allosterically modify the movement of the voltage sensors in voltage-dependent ion channels. For instance, the voltage sensor of domain III is specifically stabilized in the activated state when sodium currents are blocked by local anesthetics. The molecular mechanism underlying this long-range interaction between the blocker-binding site in the pore and voltage sensors remains poorly understood. Here, using scanning mutagenesis in combination with voltage clamp fluorimetry, we systematically evaluate the role of the internal gating interface of domain III of the sodium channel. We find that several mutations in the S4-S5 linker and S5 and S6 helices dramatically reduce the stabilizing effect of lidocaine on the activation of domain III voltage sensor without significantly altering use-dependent block at saturating drug concentrations. In the wild-type skeletal muscle sodium channel, local anesthetic block is accompanied by a 21% reduction in the total gating charge. In contrast, point mutations in this critical intracellular region reduce this charge modification by local anesthetics. Our analysis of a simple model suggests that these mutations in the gating interface are likely to disrupt the various coupling interactions between the voltage sensor and the pore of the sodium channel. These findings provide a molecular framework for understanding the mechanisms underlying allosteric interactions between a drug-binding site and voltage sensors.  相似文献   

2.
A voltage clamp technique was used to study sodium currents and gating currents in squid axons internally perfused with the membrane impermeant sodium channel blocker, QX-314. Block by QX-314 is strongly and reversibly enhanced if a train of depolarizing pulses precedes the measurement. The depolarization-induced block is antagonized by external sodium. This antagonism provides evidence that the blocking site for the drug lies inside the channel. Depolarization-induced block of sodium current by QX-314 is accompanied by nearly twofold reduction in gating charge movement. This reduction does not add to a depolarization-induced immobilization of gating charge normally present and believed to be associated with inactivation of sodium channels. Failure to act additively suggests that both, inactivation and QX-314, affect the same component of gating charge movement. Judged from gating current measurement, a drug-blocked channel is an inactivated channel. In the presence of external tetrodotoxin and internal QX-314, gating charge movement is always half its normal size regardless of conditioning, as it QX-314 is then permanently present in the channel.  相似文献   

3.
Alpha-scorpion toxins bind in a voltage-dependent way to site 3 of the sodium channels, which is partially formed by the loop connecting S3 and S4 segments of domain IV, slowing down fast inactivation. We have used Ts3, an alpha-scorpion toxin from the Brazilian scorpion Tityus serrulatus, to analyze the effects of this family of toxins on the muscle sodium channels expressed in Xenopus oocytes. In the presence of Ts3 the total gating charge was reduced by 30% compared with control conditions. Ts3 accelerated the gating current kinetics, decreasing the contribution of the slow component to the ON gating current decay, indicating that S4-DIV was specifically inhibited by the toxin. In addition, Ts3 accelerated and decreased the fraction of charge in the slow component of the OFF gating current decay, which reflects an acceleration in the recovery from the fast inactivation. Site-specific fluorescence measurements indicate that Ts3 binding to the voltage-gated sodium channel eliminates one of the components of the fluorescent signal from S4-DIV. We also measured the fluorescent signals produced by the movement of the first three voltage sensors to test whether the bound Ts3 affects the movement of the other voltage sensors. While the fluorescence-voltage (F-V) relationship of domain II was only slightly affected and the F-V of domain III remained unaffected in the presence of Ts3, the toxin significantly shifted the F-V of domain I to more positive potentials, which agrees with previous studies showing a strong coupling between domains I and IV. These results are consistent with the proposed model, in which Ts3 specifically impairs the fraction of the movement of the S4-DIV that allows fast inactivation to occur at normal rates.  相似文献   

4.
Drug interactions and drug specificity are core themes for the pharmacologist. The paper discussed in this Viewpoint exploits the former to attain the latter. How can one improve local anesthetics so that they block pain but permit normal sensation? QX-314 is a charged derivative of lidocaine without anesthetic activity because it cannot diffuse across the cell membrane to access the neuronal voltage-dependent sodium channel. Capsaicin is a selective activator of the TRPV1 channel, the localization of which is restricted to sensory C-fiber neurons involved in nociception. Because the large pore size of the activated TRPV1 allows passage of large cations such as QX-314, combined treatment with capsaicin and QX-314 puts QX-314 uniquely into that subclass of neurons mediating pain, thereby achieving sensational specificity.  相似文献   

5.
In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltage-dependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.  相似文献   

6.
The weaver mutation (G156S) in G-protein-gated inwardly rectifying K+ (GIRK) channels alters ion selectivity and reveals sensitivity to inhibition by a charged local anesthetic, QX-314, applied extracellularly. In this paper, disrupting the ion selectivity in another GIRK channel, chimera I1G1(M), generates a GIRK channel that is also inhibited by extracellular local anesthetics. I1G1(M) is a chimera of IRK1 (G-protein-insensitive) and GIRK1 and contains the hydrophobic domains (M1-pore-loop-M2) of GIRK1 (G1(M)) with the N- and C-terminal domains of IRK1 (I1). The local anesthetic binding site in I1G1(M) is indistinguishable from that in GIRK2(wv) channels. Whereas chimera I1G1(M) loses K+ selectivity, although there are no mutations in the pore-loop complex, chimera I1G2(M), which contains the hydrophobic domain from GIRK2, exhibits normal K+ selectivity. Mutation of two amino acids that are unique in the pore-loop complex of GIRK1 (F137S and A143T) restores K+ selectivity and eliminates the inhibition by extracellular local anesthetics, suggesting that the pore-loop complex prevents QX-314 from reaching the intrapore site. Alanine mutations in the extracellular half of the M2 transmembrane domain alter QX-314 inhibition, indicating the M2 forms part of the intrapore binding site. Finally, the inhibition of G-protein-activated currents by intracellular QX-314 appears to be different from that observed in nonselective GIRK channels. The results suggest that inward rectifiers contain an intrapore-binding site for local anesthetic that is normally inaccessible from extracellular charged local anesthetics.  相似文献   

7.
We have recently reported that brain sodium channels display periods with high (low-Kd) and low (high-Kd) levels of lidocaine-induced open channel block (Salazar, B.C., D.O. Flash, J.L. Walewski, and E. Recio- Pinto. 1995. Brain Res. 699:305-314). In the present study, we further characterize this phenomenon by studying the effects of the permanently charged lidocaine analogue, QX-314. We found that the detection of high- and low-Kd periods does not require the presence of the uncharged form of lidocaine. The level of block, for either period, at various QX-314 concentrations indicated the presence of a single local anesthetic binding site. Increasing the concentration of QX-314 decreased the lifetime of the high-Kd periods while it increased the lifetime of the low-Kd periods. These results could be best fitted to a model with two open channel conformations that display different local anesthetic Kd values (low and high Kd), and in which the channel area defining the local anesthetic Kd consists of multiple interacting regions. Amplitude distribution analysis showed that changes in the Kd values reflected changes in the kon rates, without changes in the koff rates. Both lidocaine and QX-314 were found to be incapable of blocking small- channel subconductance states (5-6 pS). Changes in the local anesthetic kon rates for blocking the fully open state and the lack of local anesthetic block of the small subconductance state are consistent with the presence of channel conformational changes involving the intracellular permeation pathway leading to the local anesthetic binding site.  相似文献   

8.
Block of sodium ionic current by lidocaine is associated with alteration of the gating charge-voltage (Q-V) relationship characterized by a 38% reduction in maximal gating charge (Q(max)) and by the appearance of additional gating charge at negative test potentials. We investigated the molecular basis of the lidocaine-induced reduction in cardiac Na channel-gating charge by sequentially neutralizing basic residues in each of the voltage sensors (S4 segments) in the four domains of the human heart Na channel (hH1a). By determining the relative reduction in the Q(max) of each mutant channel modified by lidocaine we identified those S4 segments that contributed to a reduction in gating charge. No interaction of lidocaine was found with the voltage sensors in domains I or II. The largest inhibition of charge movement was found for the S4 of domain III consistent with lidocaine completely inhibiting its movement. Protection experiments with intracellular MTSET (a charged sulfhydryl reagent) in a Na channel with the fourth outermost arginine in the S4 of domain III mutated to a cysteine demonstrated that lidocaine stabilized the S4 in domain III in a depolarized configuration. Lidocaine also partially inhibited movement of the S4 in domain IV, but lidocaine's most dramatic effect was to alter the voltage-dependent charge movement of the S4 in domain IV such that it accounted for the appearance of additional gating charge at potentials near -100 mV. These findings suggest that lidocaine's actions on Na channel gating charge result from allosteric coupling of the binding site(s) of lidocaine to the voltage sensors formed by the S4 segments in domains III and IV.  相似文献   

9.
Batrachotoxin (BTX)-activated Na+ channels from rabbit skeletal muscle were incorporated into planar lipid bilayers. These channels appear to open most of the time at voltages greater than -60 mV. Local anesthetics, including QX-314, bupivacaine, and cocaine when applied internally, induce different durations of channel closures and can be characterized as "fast" (mean closed duration less than 10 ms at +50 mV), "intermediate" (approximately 80 ms), and "slow" (approximately 400 ms) blockers, respectively. The action of these local anesthetics on the Na+ channel is voltage dependent; larger depolarizations give rise to stronger binding interactions. Both the dose-response curve and the kinetics of the cocaine-induced closures indicate that there is a single class of cocaine-binding site. QX-314, though a quaternary-amine local anesthetic, apparently competes with the same binding site. External cocaine or bupivacaine application is almost as effective as internal application, whereas external QX-314 is ineffective. Interestingly, external Na+ ions reduce the cocaine binding affinity drastically, whereas internal Na+ ions have little effect. Both the cocaine association and dissociation rate constants are altered when external Na+ ion concentrations are raised. We conclude that (a) one cocaine molecule closes one BTX-activated Na+ channel in an all-or-none manner, (b) the binding affinity of cocaine is voltage sensitive, (c) this cocaine binding site can be reached by a hydrophilic pathway through internal surface and by a hydrophobic pathway through bilayer membrane, and (d) that this binding site interacts indirectly with the Na+ ions. A direct interaction between the receptor and Na+ ions seems minimal.  相似文献   

10.
The time course of recovery from use-dependent block of sodium channels caused by local anesthetics was studied in squid axons. In the presence of lidocaine or its quaternary derivatives, QX-222 and QX-314, or 9-aminoacridine (9-AA), recovery from use-dependent block occurred in two phases: a fast phase and a slow phase. Only the fast phase was observed in the presence of benzocaine. The fast phase had a time constant of several milliseconds and resembled recovery from the fast Na inactivation in the absence of drug. Depending on the drug present, the magnitude of the time constant of the slow phase varied (for example at -80 mV): lidocaine, 270 ms; QX-222, 4.4 s; QX-314, 17 s; and 9-AA, 14 s. The two phases differed in the voltage dependence of recovery time constants. When the membrane was hyperpolarized, the recovery time constant for the fast phase was decreased, whereas that for the slow phase was increased for QX-compounds and 9-AA or unchanged for lidocaine. The fast phase is interpreted as representing the unblocked channels recovering from the fast Na inactivation, and the slow phase as representing the bound and blocked channels recovering from the use-dependent block accumulated by repetitive depolarizing pulse. The voltage dependence of time constants for the slow recovery is consistent with the m-gate trapping hypothesis. According to this hypothesis, the drug molecule is trapped by the activation gate (the m-gate) of the channel. The cationic form of drug molecule leaves the channel through the hydrophilic pathway, when the channel is open. However, lidocaine, after losing its proton, may leave the closed channel rapidly through the hydrophobic pathway.  相似文献   

11.
Various local anesthetics enhanced the incorporation of [3H]inositol into phosphoinositides in guinea pig cerebral cortical synaptoneurosomes. Dibucaine, QX-572 and dimethisoquin showed maximum stimulation at 100 microM, tetracaine and diphenhydramine at 300 microM, and QX-314 at 1 mM, while quinacrine, lidocaine and cocaine showed no or only slight stimulation. There was no correlation between local anesthetic activity, estimated by inhibition of the 22Na+ flux elicited by the sodium channel activator batrachotoxin, and the potency for stimulation of inositol incorporation. A quaternary, relatively weak, local anesthetic, QX-572, was the most potent agent in stimulation of inositol incorporation, while the next most potent agent was dibucaine, a tertiary, very potent, local anesthetic. Dibucaine did not affect the uptake of [3H]inositol by synaptoneurosomes. The incorporation of [3H]inositol into phosphoinositides was increased in calcium-free buffer. The presence of dibucaine resulted in further stimulation of [3H]inositol incorporation in calcium-free buffer. Although dibucaine and QX-572 markedly stimulated incorporation of [3H]inositol into phosphoinositides, only QX-572 significantly enhanced the incorporation of 32PO4(3-) into phosphoinositides. The results suggest that certain local anesthetics enhance a pathway involving an exchange reaction between inositol and the phosphoinositol ester bond of phosphatidylinositol, but do not markedly affect the de novo pathway of phosphoinositide synthesis.  相似文献   

12.
The voltage-sensing S4 segments in the sodium channel undergo conformational rearrangements in response to changes in the electric field. However, it remains unclear whether these structures move independently or in a coordinated manner. Previously, site-directed fluorescence measurements were shown to track S4 transitions in each of the four domains. Here, using a similar technique, we provide direct evidence of coupling interactions between voltage sensors in the sodium channel. Pairwise interactions between S4s were evaluated by comparing site-specific conformational changes in the presence and absence of a gating perturbation in a distal domain. Reciprocity of effect, a fundamental property of thermodynamically coupled systems, was measured by generating converse mutants. The magnitude of a local gating perturbation induced by a remote S4 mutation depends on the coupling strength and the relative equilibrium positions of the two voltage sensors. In general, our data indicates that the movement of all four voltage sensors in the sodium channel are coupled to a varying extent. Moreover, a gating perturbation in S4-DI has the largest effect on the activation of S4-DIV and vice versa, demonstrating an energetic linkage between S4-DI and S4-DIV. This result suggests a physical mechanism by which the activation and inactivation process may be coupled in voltage-gated sodium channels. In addition, we propose that cooperative interactions between voltage sensors may be the mechanistic basis for the fast activation kinetics of the sodium channel.  相似文献   

13.
The primary voltage sensor of the sodium channel is comprised of four positively charged S4 segments that mainly differ in the number of charged residues and are expected to contribute differentially to the gating process. To understand their kinetic and steady-state behavior, the fluorescence signals from the sites proximal to each of the four S4 segments of a rat skeletal muscle sodium channel were monitored simultaneously with either gating or ionic currents. At least one of the kinetic components of fluorescence from every S4 segment correlates with movement of gating charge. The fast kinetic component of fluorescence from sites S216C (S4 domain I), S660C (S4 domain II), and L1115C (S4 domain III) is comparable to the fast component of gating currents. In contrast, the fast component of fluorescence from the site S1436C (S4 domain IV) correlates with the slow component of gating. In all the cases, the slow component of fluorescence does not have any apparent correlation with charge movement. The fluorescence signals from sites reflecting the movement of S4s in the first three domains initiate simultaneously, whereas the fluorescence signals from the site S1436C exhibit a lag phase. These results suggest that the voltage-dependent movement of S4 domain IV is a later step in the activation sequence. Analysis of equilibrium and kinetic properties of fluorescence over activation voltage range indicate that S4 domain III is likely to move at most hyperpolarized potentials, whereas the S4s in domain I and domain II move at more depolarized potentials. The kinetics of fluorescence changes from sites near S4-DIV are slower than the activation time constants, suggesting that the voltage-dependent movement of S4-DIV may not be a prerequisite for channel opening. These experiments allow us to map structural features onto the kinetic landscape of a sodium channel during activation.  相似文献   

14.
Voltage-gated sodium selective ion channel NaV1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. NaV1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon NaV1.5 to modulate activity by multiple mechanisms. This study examined whether NaV1.5 mechanosensitivity is modulated by local anesthetics. NaV1.5 channels wereexpressed in HEK-293 cells, and mechanosensitivity was tested in cell-attached and excised inside-out configurations. Using a novel protocol with paired voltage ladders and short pressure pulses, negative patch pressure (-30 mmHg) in both configurations produced a hyperpolarizing shift in the half-point of the voltage-dependence of activation (V1/2a) and inactivation (V1/2i) by about -10 mV. Lidocaine (50 µM) inhibited the pressure-induced shift of V1/2a but not V1/2i. Lidocaine inhibited the tonic increase in pressure-induced peak current in a use-dependence protocol, but it did not otherwise affect use-dependent block. The local anesthetic benzocaine, which does not show use-dependent block, also effectively blocked a pressure-induced shift in V1/2a. Lidocaine inhibited mechanosensitivity in NaV1.5 at the local anesthetic binding site mutated (F1760A). However, a membrane impermeable lidocaine analog QX-314 did not affect mechanosensitivity of F1760A NaV1.5 when applied from either side of the membrane. These data suggest that the mechanism of lidocaine inhibition of the pressure-induced shift in the half-point of voltage-dependence of activation is separate from the mechanisms of use-dependent block. Modulation of NaV1.5 mechanosensitivity by the membrane permeable local anesthetics may require hydrophobic access and may involve membrane-protein interactions.  相似文献   

15.
When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. However, after a brief (50 ms) depolarizing pulse, recovery from lidocaine block is similar for the two isoforms despite marked kinetic differences in drug-free recovery, suggesting that differences in fast inactivation cannot entirely explain the isoform difference in lidocaine action. Given the strong coupling between fast inactivation and other gating processes linked to depolarization (activation, slow inactivation), we considered the possibility that isoform differences in lidocaine block are explained by differences in these other gating processes. In whole-cell recordings from HEK-293 cells, the voltage dependence of hH1 current activation was approximately 20 mV more negative than that of mu1. Because activation and closed-state inactivation are positively coupled, these differences in activation were sufficient to shift hH1 availability to more negative membrane potentials. A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.  相似文献   

16.
Voltage-gated sodium selective ion channel NaV1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. NaV1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon NaV1.5 to modulate activity by multiple mechanisms. This study examined whether NaV1.5 mechanosensitivity is modulated by local anesthetics. NaV1.5 channels wereexpressed in HEK-293 cells, and mechanosensitivity was tested in cell-attached and excised inside-out configurations. Using a novel protocol with paired voltage ladders and short pressure pulses, negative patch pressure (-30 mmHg) in both configurations produced a hyperpolarizing shift in the half-point of the voltage-dependence of activation (V1/2a) and inactivation (V1/2i) by about -10 mV. Lidocaine (50 µM) inhibited the pressure-induced shift of V1/2a but not V1/2i. Lidocaine inhibited the tonic increase in pressure-induced peak current in a use-dependence protocol, but it did not otherwise affect use-dependent block. The local anesthetic benzocaine, which does not show use-dependent block, also effectively blocked a pressure-induced shift in V1/2a. Lidocaine inhibited mechanosensitivity in NaV1.5 at the local anesthetic binding site mutated (F1760A). However, a membrane impermeable lidocaine analog QX-314 did not affect mechanosensitivity of F1760A NaV1.5 when applied from either side of the membrane. These data suggest that the mechanism of lidocaine inhibition of the pressure-induced shift in the half-point of voltage-dependence of activation is separate from the mechanisms of use-dependent block. Modulation of NaV1.5 mechanosensitivity by the membrane permeable local anesthetics may require hydrophobic access and may involve membrane-protein interactions.  相似文献   

17.
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we detected KAT1-gating currents due to the existence of an intrinsic voltage sensor in this channel. The measured gating currents evoked in response to hyperpolarizing voltage steps consist of a very fast (tau = 318 +/- 34 micros at -180 mV) and a slower component (4.5 +/- 0.5 ms at -180 mV) representing charge moved when most channels are closed. The observed gating currents precede in time the ionic currents and they are measurable at voltages (less than or equal to -60) at which the channel open probability is negligible ( approximately 10-4). These two observations, together with the fact that there is a delay in the onset of the ionic currents, indicate that gating charge transits between several closed states before the KAT1 channel opens. To gain insight into the molecular mechanisms that give rise to the gating currents and lead to channel opening, we probed external accessibility of S4 domain residues to methanethiosulfonate-ethyltrimethylammonium (MTSET) in both closed and open cysteine-substituted KAT1 channels. The results demonstrate that the putative voltage-sensing charges of S4 move inward when the KAT1 channels open.  相似文献   

18.
The gating status of the QX-314 bound Na channels before and after suppressing the fast inactivation by chloramine-T (CT) was investigated by studying the gating charge immobilization using the OFF gating current (Ig,OFF). CT treatment, which abolishes the charge immobilization induced by a prolonged depolarization, altered the kinetics of Ig,OFF: the fast phase became insensitive to the pulse duration and the slow phase became three times faster than the control one. However, internally applied QX-314 (in the presence of external TTX) caused an immediate charge immobilization similar to that observed in the absence of CT treatment. The Ig,OFF exhibited kinetics similar to the inactivated channels, decaying with a very fast time course. We conclude that the charge immobilization is restored by QX-314 in the chloramine-T-treated axon and that the gating state of the QX-314-bound channel is similar to the inactivated one. The role of the gating charge immobilization in the use-dependent block mechanism is discussed.  相似文献   

19.
The inhibition of sodium currents by local anesthetics and other blocking compounds was studied in perfused, voltage-clamped segments of squid giant axon. When applied internally, each of the eight compounds studied results in accumulating "use-depnedent" block of sodium currents upon repetitive pulsing. Recovery from block occurs over a time scale of many seconds. In axons treated with pronase to completely eliminate sodium inactivation, six of the compounds induce a time- and voltage-dependent decline of sodium currents after activation during a maintained depolarization. Four of the time-dependent blocking compounds--procaine, 9-aminoacridine, N-methylstrychnine, and QX572--also induce altered sodium tail currents by hindering closure of the activation gating mechanism. Treatment of the axon with pronase abolishes use-dependent block completely by QX222, QX314, 9-aminoacridine, and N-methylstrychnine, but only partially be tetracaine and etidocaine. Two pulse experiments reveal that recovery from block by 9-aminoacridine or N-methyl-strychnine is greatly accelerated after pronase treatment. Pronase treatment abolishes both use-dependent and voltage-dependent block by QX222 and QX314. These results provide support for a direct role of the inactivation gating mechanism in producing the long-lasting use-dependent inhibition brought about by local anesthetic compounds.  相似文献   

20.
Sokolov S  Scheuer T  Catterall WA 《Neuron》2005,47(2):183-189
Voltage-gated sodium channels activate in response to depolarization, but it is unknown whether the voltage-sensing arginines in their S4 segments pivot across the lipid bilayer as voltage sensor paddles or move through the protein in a gating pore. Here we report that mutation of pairs of arginine gating charges to glutamine induces cation permeation through a gating pore in domain II of the Na(V)1.2a channel. Mutation of R850 and R853 induces a K(+)-selective inward cationic current in the resting state that is blocked by activation. Remarkably, mutation of R853 and R856 causes an outward cationic current with the opposite gating polarity. These results support a model in which the IIS4 gating charges move through a narrow constriction in a gating pore in the sodium channel protein during gating. Paired substitutions of glutamine allow cation movement through the constriction when appropriately positioned by the gating movements of the S4 segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号