首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) is a crucial signaling molecule regulating a diverse array of physiological processes, including adaptive immunity, innate immunity, bone metabolism and the development of several tissues including lymph nodes, mammary glands, skin and the central nervous system. It is a member of a group of six closely related TRAF proteins, which serve as adapter molecules, coupling the TNF receptor (TNFR) superfamily to intracellular signaling events. Among the TRAF proteins, TRAF6 is unique in that, in addition to mediating TNFR family signaling, it is also essential for signaling downstream of an unrelated family of receptors, the interleukin-1 (IL-1) receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene targeting experiments have identified several indispensable physiological functions of TRAF6, and structural and biochemical studies have revealed the potential mechanisms of its action. By virtue of its many signaling roles, TRAF6 represents an important target in the regulation of many disease processes, including immunity, inflammation and osteoporosis.  相似文献   

2.
An aminopeptidase,ARTS-1, is required for interleukin-6 receptor shedding   总被引:1,自引:0,他引:1  
Aminopeptidase regulator of TNFR1 shedding (ARTS-1) binds to the type I tumor necrosis factor receptor (TNFR1) and promotes receptor shedding. Because hydroxamic acid-based metalloprotease inhibitors prevent shedding of both TNFR1 and the interleukin-6 receptor (IL-6Ralpha), we hypothesized that ARTS-1 might also regulate shedding of IL-6Ralpha, a member of the type I cytokine receptor superfamily that is structurally different from TNFR1. Reciprocal co-immunoprecipitation experiments identified that membrane-associated ARTS-1 directly binds to a 55-kDa IL-6Ralpha, a size consistent with soluble IL-6Ralpha generated by ectodomain cleavage of the membrane-bound receptor. Furthermore, ARTS-1 promoted IL-6Ralpha shedding, as demonstrated by a direct correlation between increased membrane-associated ARTS-1 protein, increased IL-6Ralpha shedding, and decreased membrane-associated IL-6Ralpha in cell lines overexpressing ARTS-1. The absence of basal IL-6Ralpha shedding from arts-1 knock-out cells identified that ARTS-1 was required for constitutive IL-6Ralpha shedding. Furthermore, the mechanism of constitutive IL-6Ralpha shedding requires ARTS-1 catalytic activity. Thus, ARTS-1 promotes the shedding of two cytokine receptor superfamilies, the type I cytokine receptor superfamily (IL-6Ralpha) and the TNF receptor superfamily (TNFR1). We propose that ARTS-1 is a multifunctional aminopeptidase that may modulate inflammatory events by promoting IL-6Ralpha and TNFR1 shedding.  相似文献   

3.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

4.
There is evidence that mature dendritic cells (DCs) present in the rheumatoid arthritis (RA) joint mediate immunopathology in RA. In this study, we indicate that early myeloid progenitors for DCs and DC growth factors existing in RA synovial fluid (SF) are also likely participants in the RA disease process. A fraction of cells lacking markers associated with mature DCs or DC precursors and enriched in CD34(negative) myeloid progenitors was isolated from RA SF. These cells proliferated extensively when cultured in vitro with cytokines that promote the growth of myeloid DCs (GM-CSF/TNF/stem cell factor/IL-4) and, to a lesser degree, when cultured with monocyte/granulocyte-restricted growth factors (M-CSF/GM-CSF). Mature DCs derived from RA SF progenitors with CD14-DC cytokines known to be prevalent in the inflamed RA joint (GM-CSF/TNF/stem cell factor/IL-13) were potent stimulators of allogeneic T cells and inflammatory-type Th1 responses and included CD14-DC subtypes. Cell-free RA SF facilitated DC maturation from myeloid progenitors, providing direct evidence that the inflamed RA joint environment instructs DC growth. Enhanced development of CD14-derived DCs was correlated with the presence of soluble TNFR (p55), raising the possibility that soluble TNFR also regulate CD14-derived DC growth in vivo. SF from patients with osteoarthritis contained neither myeloid DC progenitors nor DC growth factors. The existence of DC progenitors and myeloid DC growth factors in RA SF supports the concept that RA SF may be a reservoir for joint-associated DCs and reveals a compelling mechanism for the amplification and perpetuation of DC-driven responses in the RA joint, including inflammatory-type Th1 responses.  相似文献   

5.
The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) alpha and Mycobacterium tuberculosis. Monarch-1 reduces NFkappaB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFkappaB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFkappaB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFalpha, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation.  相似文献   

6.
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.  相似文献   

7.
Up-regulation of receptor-ligand pairs during interaction of an MHC-presented epitope on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In this study, we used replication deficient adenoviruses to introduce a model tumor-associated Ag (the E7 oncoprotein of human papillomavirus 16) and the T cell costimulatory molecule 4-1BBL into murine DCs, and monitored the ability of these recombinant DCs to elicit E7-directed T cell responses following immunization. Splenocytes from mice immunized with DCs expressing E7 alone elicited E7-directed effector and memory CTL responses. Coexpression of 4-1BBL in these E7-expressing DCs increased effector and memory CTL responses when they were used for immunization. 4-1BBL expression up-regulated CD80 and CD86 second signaling molecules in DCs. We also report an additive effect of 4-1BBL and receptor activator of NF-kappa B/receptor activator of NF-kappa B ligand coexpression in E7-transduced DC immunogens on E7-directed effector and memory CTL responses and on MHC class II and CD80/86 expression in DCs. Additionally, expression of 4-1BBL in E7-transduced DCs reduced nonspecific T cell activation characteristic of adenovirus vector-associated immunization. The results have generic implications for improved or tumor Ag-expressing DC vaccines by incorporation of exogenous 4-1BBL. There are also specific implications for an improved DC-based vaccine for human papillomavirus 16-associated cervical carcinoma.  相似文献   

8.
LIGHT is a recently identified member of the TNF superfamily that is up-regulated upon activation of T cells. Herpesvirus entry mediator, one of its receptors, is constitutively expressed on immature dendritic cells (DCs). In this report, we demonstrate that LIGHT induces partial DC maturation as demonstrated by Ag presentation and up-regulation of adhesion and costimulatory molecules. LIGHT-stimulated DCs show reduced macropinocytosis and enhanced allogeneic stimulatory capacity but fail to produce significant amounts of IL-12, IL-6, IL-1beta, or TNF-alpha compared with unstimulated DCs. However, LIGHT cooperates with CD154 (CD40 ligand) in DC maturation, with particular potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNF-alpha. Moreover, LIGHT costimulation allows DCs to prime in vitro-enhanced specific CTL responses. Our results suggest that LIGHT plays an important role in DC-mediated immune responses by regulating CD154 signals and represents a potential tool for DC-based cancer immunotherapy.  相似文献   

9.
Toll‐like receptors (TLR) recognize pathogens and trigger the production of vigorous pro‐inflammatory cytokines [such as tumour necrosis factor (TNF)] that induce systemic damages associated with sepsis and chronic inflammation. Cooperation between signals of TLR and TNF receptor has been demonstrated through the participation of TNF receptor 1 (TNFR) adaptors in endotoxin tolerance. Here, we identify a TLR2‐mediated synergy, through a MyD88‐independent crosstalk, which enhances subsequent TNF‐mediated nuclear factor‐kappa B activation and interleukin‐6 induction. Membrane‐associated adaptor MAL conduces the link between TNF receptor‐associated factor 6 (TRAF6) and TNFR‐associated death domain, leading to a distinctive K63‐ubiquitinylated TRAF6 recruitment into TNFR complex. In summary, our results reveal a novel route of TLR signal that synergistically amplifies TNF‐mediated responses, indicating an innovative target for inflammation manipulation.  相似文献   

10.
TNF skews monocyte differentiation from macrophages to dendritic cells   总被引:4,自引:0,他引:4  
Monocytes represent a large pool of circulating precursors of APCs, both macrophages and dendritic cells (DCs). It is thus important to identify the mechanisms by which microenvironment regulates monocyte differentiation. We have previously shown that, upon contact with resting stromal cells such as fibroblasts, monocytes differentiate into macrophages in an IL-6/M-CSF-dependent fashion. Yet, in the inflamed tissue, monocytes need to yield DCs for the adaptive immunity to be induced. Inasmuch as TNF and IL-1 are present at the site of inflammation, we tested their capacity to modulate monocyte differentiation into either macrophages or DCs. TNF, but not IL-1, induce monocytes to become DCs despite the presence of fibroblasts. TNF-induced DCs contain Langerin-positive cells and are able to induce allogenic T cell proliferation. Then, TNF was found to decrease the expression and internalization of the M-CSF receptor, thus overriding the IL-6/M-CSF pathway. Thus, TNF facilitates the induction of adaptive immunity by promoting DC differentiation not only from CD34+ progenitors but also from CD14+ blood precursors.  相似文献   

11.
Mature dendritic cells (DCs) play a pathogenic role in atherosclerosis. Our previous study demonstrated that exogenous interleukin (IL)-37 suppresses the maturation of DCs, induces the T-regulatory (Treg) cell response, and attenuates atherosclerosis in ApoE−/− mice. The aim of the present study was to explore the molecular mechanism of IL-37 on the maturation of DCs throughout the development of atherosclerosis. The expression of interleukin-1 receptor 8 (IL-1R8), which is a single Ig-domain receptor that was recently found to be pivotal for the extracellular function of IL-37, Toll-like receptor (TLR) 4 and p65, was measured in ApoE−/− mice and IL-37 transgenic (IL-37tg) ApoE−/− mice. IL-1R8 was mainly expressed in aortic plaque-infiltrated DCs and at significantly higher levels in IL-37tg atherosclerotic mice, accompanied by lower levels of TLR4 and p65. Furthermore, IL-37 eliminated the maturation of DCs induced by oxidized low-density lipoprotein (oxLDL) and caused marked upregulation of IL-1R8 in vitro and downregulation of TLR4 and p65, which was consistent with the experiments in mice. However, the inhibitory effect of IL-37 on the maturation of DCs in vitro was abolished when IL-37 was used to treat DCs isolated from IL-1R8-deficient and TLR4-deficient mice. Therefore, this study indicated that IL-37 inhibited the maturation of DCs via the IL-1R8-TLR4-NF-κB pathway and attenuated atherosclerosis in ApoE−/− mice.  相似文献   

12.
13.
Glutaredoxin-1 (GRX-1) is a cytoplasmic enzyme that highly contributes to the antioxidant defense system. It catalyzes the reversible reduction of glutathione-protein mixed disulfides, a process called deglutathionylation. Here, we investigated the role of GRX-1 in the pathway triggered by interleukin-1/Toll-like receptor 4 (IL-1R/TLR4) by using RNA interference (RNAi) in HEK293 and HeLa cells. TNF receptor-associated factor 6 (TRAF6) is an intermediate signalling molecule involved in the signal transduction by members of the interleukin-1/Toll-like receptor (IL-1R/TLR) family. TRAF6 has an E3 ubiquitin ligase activity which depends on the integrity of an amino-terminal really interesting new gene (RING) finger motif. Upon receptor activation, TRAF6 undergoes K63-linked auto-polyubiquitination which mediates protein-protein interactions and signal propagation. Our data showed that IL-1R and TLR4-mediated NF-κB induction was severely reduced in GRX-1 knockdown cells. We found that the RING-finger motif of TRAF6 is S-glutathionylated under normal conditions. Moreover, upon IL-1 stimulation TRAF6 undergoes deglutathionylation catalyzed by GRX-1. The deglutathionylation of TRAF6 is essential for its auto-polyubiquitination and subsequent activation. Taken together, our findings reveal another signalling molecule affected by S-glutathionylation and uncover a crucial role for GRX-1 in the TRAF6-dependent activation of NF-κB by IL-1R/TLRs.  相似文献   

14.
Interferon Regulatory Factors (IRFs) play fundamental roles in dendritic cell (DC) differentiation and function. In particular, IRFs are critical transducers of TLR signaling and dysregulation in this family of factors is associated with the development of autoimmune disorders such as Systemic Lupus Erythematosus (SLE). While several IRFs are expressed in DCs their relative contribution to the aberrant phenotypic and functional characteristics that DCs acquire in autoimmune disease has not been fully delineated. Mice deficient in both DEF6 and SWAP-70 (= Double-knock-out or DKO mice), two members of a unique family of molecules that restrain IRF4 function, spontaneously develop a lupus-like disease. Although autoimmunity in DKO mice is accompanied by dysregulated IRF4 activity in both T and B cells, SWAP-70 is also known to regulate multiple aspects of DC biology leading us to directly evaluate DC development and function in these mice. By monitoring Blimp1 expression and IL-10 competency in DKO mice we demonstrate that DCs in these mice exhibit dysregulated IL-10 production, which is accompanied by aberrant Blimp1 expression in the spleen but not in the peripheral lymph nodes. We furthermore show that DCs from these mice are hyper-responsive to multiple TLR ligands and that IRF4 plays a differential role in in these responses by being required for the TLR4-mediated but not the TLR9-mediated upregulation of IL-10 expression. Thus, DC dysfunction in lupus-prone mice relies on both IRF4-dependent and IRF4-independent pathways.  相似文献   

15.
Toll-like receptors (TLR) initiate rapid innate immune responses by recognizing microbial products. These events in turn lead to the development of an efficient adaptive immune response through the up-regulation of a number of costimulatory molecules, including members of the TNF/TNFR superfamily, on the surface of an APC. TNFR-associated factor 6 (TRAF6) is a common signaling adapter used by members of both the TNFR and the TLR/IL-1R superfamilies, and as such plays a critical role in the development of immune responses. As TRAF6-deficient mice die prematurely, we generated chimeras reconstituted with TRAF6-deficient fetal liver cells to analyze functions of TRAF6 in vivo in the hemopoietic compartment. We found that TRAF6-deficient chimeras develop a progressive lethal inflammatory disease associated with massive organ infiltration and activation of CD4(+) T cells in a Th2-polarized phenotype, and a defect in IL-18 responsiveness. When recombination-activating gene 2(-/-) blastocysts were complemented with TRAF6-deficient embryonic stem cells, a marked elevation of activated CD4(+) T cells and progressive inflammatory disease were also observed. Moreover, T cell activation and lethal inflammation were not reversed in mixed chimeric mice generated from normal and TRAF6-deficient fetal liver cells. These results suggest that deletion of TRAF6 induces a dominant Th2-type polarized autoimmune response. Therefore, in addition to playing a critical role in innate and adaptive immunity, TRAF6 is likely to play a previously unrecognized role in the maintenance of self-tolerance.  相似文献   

16.
Tumor necrosis factor (TNF) is an important cytokine that suppresses carcinogenesis and excludes infectious pathogens to maintain homeostasis. TNF activates its two receptors [TNF receptor (TNFR) 1 and TNFR2], but the contribution of each receptor to various host defense functions and immunologic surveillance is not yet clear. Here, we used phage display techniques to generate receptor-selective TNF mutants that activate only one TNFR. These TNF mutants will be useful in the functional analysis of TNFR.Six amino acids in the receptor binding interface (near TNF residues 30, 80, and 140) were randomly mutated by polymerase chain reaction. Two phage libraries comprising over 5 million TNF mutants were constructed. By selecting the mutants without affinity for TNFR1 or TNFR2, we successfully isolated 4 TNFR2-selective candidates and 16 TNFR1-selective candidates, respectively. The TNFR1-selective candidates were highly mutated near residue 30, whereas TNFR2-selective candidates were highly mutated near residue 140, although both had conserved sequences near residues 140 and 30, respectively. This finding suggested that the phage display technique was suitable for identifying important regions for the TNF interaction with TNFR1 and TNFR2. Purified clone R1-6, a TNFR1-selective candidate, remained fully bioactive and had full affinity for TNFR1 without activating TNFR2, indicating the usefulness of the R1-6 TNF mutant in analyzing TNFR1 receptor function.To further elucidate the receptor selectivity of R1-6, we examined the structure of R1-6 by X-ray crystallography. The results suggested that R31A and R32G mutations strongly influenced electrostatic interaction with TNFR2, and that L29K mutation contributed to the binding of R1-6 to TNFR1. This phage display technique can be used to efficiently construct functional mutants for analysis of the TNF structure-function relationship, which might facilitate in silico drug design based on receptor selectivity.  相似文献   

17.
Members of the TNF superfamily have been shown to be instrumental in enhancing cell-mediated immune responses, primarily through their interactions with dendritic cells (DCs). We systematically evaluated the ability of three TNF superfamily molecules, CD40 ligand (CD40L), receptor activator of NF-kappaB ligand (RANKL), and TNF-alpha, to expand ex vivo EBV-specific CTL responses in healthy human individuals and ex vivo HIV-1-specific CTL responses in HIV-1-infected individuals. In both groups of individuals, we found that all three TNF family molecules could expand CTL responses, albeit at differing degrees. CD40L treatment alone was better than RANKL or TNF-alpha alone to mature DCs and to expand CTL. In healthy volunteers, TNF-alpha or RANKL could cooperate with CD40L to maximize the ability of DCs to expand virus-specific CTL responses. In HIV-1 infection, cooperative effects between TNF-alpha or RANKL in combination with CD40L were variable. TNF-alpha and RANKL cooperated with CD40L via differing mechanisms, i.e., TNF-alpha enhanced IL-12 production, whereas RANKL enhanced survival of CD40L-stimulated DCs. These findings demonstrate that optimal maturation of DCs requires multiple signals by TNF superfamily members that include CD40L. In HIV-1 infection, DCs may only require CD40L to maximally expand CTL. Finally, CTL responses were higher in CD4(+) T cell-containing conditions even in the presence of TNF family molecules, suggesting that CD4(+) T cells can provide help to CD8(+) T cells independently of CD40L, RANKL, or TNF-alpha.  相似文献   

18.
Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs. The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2 and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.  相似文献   

19.
Effector functions in tumor resistance by dendritic cells (DCs) are less well characterized. In this study, we describe that the murine DCs upon stimulation with recombinant IL-15 in vitro or in vivo, expresses TNF superfamily member TRAIL which mediates cytotoxicity and growth inhibition against a murine lymphoma called Dalton lymphoma (DL) via apoptosis. Presence of tumor lysate or intact tumor cells significantly reduces the DC mediated tumoricidal effect, possibly via masking and down-regulating TRAIL in DCs. The antitumor effect of DC derived TRAIL was further augmented by deactivation of STAT3 in tumor cells by cucurbitacin I, which makes it more susceptible to DC derived TRAIL Treatment of tumor cells with cucurbitacin I upregulates TRAIL receptor expression in addition to activation of caspases. Compared to naïve DCs, DCs from tumor bearing mice are significantly impaired in TRAIL expression and consequent antitumor functions against DL which was partially restored by activation with IL-15 or LPS. Priming with recombinant IL-15 prolongs the survival of tumor bearing mice treated with cucurbitacin I. Naïve peripheral blood DCs derived from chronic myeloid leukemia (CML) patients have significant impairment in expression of TRAIL and consequent tumoricidal properties against TRAIL sensitive lymphoma cell lines and primary tumor cells compared to normal control.  相似文献   

20.
The recently delineated role for IL-23 in enhancing Th-17 activity suggests that regulation of its expression is distinct from that of IL-12. We hypothesized that independent TLR-mediated pathways are involved in the regulation of IL-12 and IL-23 production by myeloid-derived dendritic cells (DCs). The TLR 2 ligand, lipoteichoic acid (LTA), the TLR 4 ligand, LPS, and the TLR 7/8 ligand, resimiquod (R848), induced production of IL-23 by DCs. None of these TLR ligands alone induced significant IL-12 production, except when combined with IFN-gamma or other TLR ligands. Notably, IL-23 production in response to single TLR ligands was inhibited by IL-4. DCs treated with single TLR agonists induced IL-17A production by allogeneic and Ag-specific memory CD4(+) T cells, an effect that was abrogated by IL-23 neutralization. Moreover, these DCs stimulated IL-17A production by tumor peptide-specific CD8(+) T cells. In contrast, DCs treated with dual signals induced naive and memory Th1 responses and enhanced the functional avidity of tumor-specific CD8(+) T cells. These results indicate that distinct microbial-derived stimuli are required to drive myeloid DC commitment to IL-12 or IL-23 production, thereby differentially polarizing T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号