首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Dry matter, nitrogen, and energy budgets were determined for laboratory cultures of Hydra pseudoligactis reared at 10, 15, 20, and 25° C, and fed freshly collected zooplankton. Maximum specific feeding rates increased from 0.24 to 0.91 (KJ food/KJ Hydra) with increasing rearing temperature. The corresponding growth rates increased from 0.14 to 0.29 but gross (growth/ingestion), net (growth/(ingestion-egestion)), and assimilation (gross/net) efficiencies decreased with increasing temperatures. The requisite food densities to maintain maximum ingestion rates (when permitted to feed for 3 hrs day-1) increased from 0.0056 to 0.021 KJ of zooplankton/KJ of Hydra. The combination of increasing energy requirements, decreasing food supply, and efficiencies of food utilization, with increasing water temperatures may contribute to the rapid declines of Hydra populations that are often observed in temperate lakes.Financial support was provided by the Youngstown State University Research Council, Grant Number 287 and a Grand-in-Aid of Research to W.C. from Sigma Xi, The Scientific Research Society of North America. George Mateja and Karen Gates helped with the laboratory and field work. The Mahoning Valley Sanitary District, Mr. John Tucker, Chief Engineer, provided facilities and access to Meander Creek Reservoir. The figures were prepared by Ms. Susan Geer, Youngstown State University Media Center  相似文献   

2.
Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies.  相似文献   

3.
Contrary to a generalisation arising from many studies, a larger body size is not always the key to competitive superiority amongst animals. An analysis of competition between pairs of Hydra oligactis, Hydra vulgaris and Hydra circumcincta, that simultaneously encountered a single prey item, showed that competitive success in these sessile predators depended on species and clone in inter- and intraspecific competition, respectively. H. oligactis appeared to be competitively superior, even to the larger H. vulgaris individuals. Phenotypic traits important for prey capture, such as the fraction of the nematocyst that penetrates the prey (penetrants), were positively related to success in intraspecific competition. Body size appeared to be a positive key factor in determining foraging success in the competition between pairs of conspecifics from single or different clones. In contrast to the results of the intraspecific competition, body size was not significantly related to the foraging success of competing heterospecifics.  相似文献   

4.
Crustaceans in the order Spinicaudata display a broad range of reproductive strategies, ranging from pure hermaphroditism to pure dioecy (separate males and females), and intermediate combinations. One particularly interesting genus of these “clam shrimps” is Eulimnadia. Based on offspring sex ratios, it has been suggested that all members of the genus are androdioecious: populations consist of mixtures of males and hermaphrodites. However, only two of the ~40 species in this genus have been examined histologically to confirm the presence of ovotestes in the purported hermaphrodites of this group. Here, we report both sex ratio and histological evidence showing that populations of five additional Eulimnadia species from India and Thailand are indeed mixes of males and hermaphrodites (four species) or hermaphrodite only (one species). Sex ratios of adults and offspring from isolated hermaphrodites are in accordance with those previously reported for 15 Eulimnadia species, and histological assays of four of the five species show the presence of both testicular and ovarian tissue in these hermaphrodites. As has been previously reported, the testicular tissue in members of these Eulimnadia spp. is located in a small section at the distal end of the gonad. In addition, the sperm produced in these hermaphrodites forms distinct plaques of compacted chromatin. Overall, these data are consistent with a single origin of hermaphroditism in Eulimnadia, and support the notion that all members of the genus are either androdioecious or all‐hermaphroditic.  相似文献   

5.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

6.
Three species of the fresh water carnivore hydra, H. littoralis, H. pseudoligactis, and C. viridissima present a graduation in size with the first species the largest and albino Chlorohydra the smallest. When presented with a daily overabundance of food (artemia), considerable variation in food intake and gross efficiency of growth (proportion of food energy consumed that is turned into new protoplasm or buds) existed among the species. The degree of association between size of species and food intake was highly significant. However, budding efficiency among the species was found to be independent of food intake (when the effects of species size were eliminated) and of species size (when the effects of food intake were removed). However, species with high (low) efficiencies have significantly higher (lower) reproductive rates. A lowering of the temperature from 25° to 15° C. increased the size of the species, increased food intake, but decreased reproductive rate. In all species except H. pseudoligactis a corresponding increase in the production of bud energy with no change in efficiency also occurred. On the other hand, lowering of the temperature for H. pseudoligactis significantly lowered reproductive efficiency but had no effect on the total calorific output of buds. This species, in constrast to the others, appears to have a compensatory ability to adjust its efficiency to maintain a high calorific output when temperature increases. It was also found that albino Chlorohydra have budding efficiencies of around 35 percent which are not influenced by changes in food intake or light. Normal green hydras, however, have efficiencies which range from 40 to 62 percent above their albino counterparts when fed once a day and once every two days in light respectively. It it concluded first, that the symbiotic algae in the gastrodermals cells of green hydra contribute quantitatively in the order of the above amounts to the growth process in this species, and second, that green hydras have the ablity to increase their growth efficiency when food intake is reduced thus reducing the drop in calorific but output that normally occurs in the albino (control) form.  相似文献   

7.
Androdioecy, the occurrence of males and hermaphrodites in a single population, is a rare breeding system because the conditions for maintenance of males are restrictive. In the androdioecious shrub Phillyrea angustifolia, high male frequencies are observed in some populations. The species has a sporophytic self‐incompatibility (SI) system with two self‐incompatibility groups, which ensures that two groups of hermaphrodites can each mate only with the other group, whereas males can fertilize hermaphrodites of both groups. Here, we analyse a population genetic model to investigate the dynamics of such an androdioecious species, assuming that self‐incompatibility and sex phenotypes are determined by a single locus. Our model confirms a previous prediction that a slight reproductive advantage of males relative to hermaphrodites allows the maintenance of males at high equilibrium frequencies. The model predicts different equilibria between hermaphrodites of the two SI groups and males, depending on the male advantage, the initial composition of the population and the population size, whose effect is studied through stochastic simulations. Although the model can generate high male frequencies, observed frequencies are considerably higher than the model predicts. We finally discuss how this model may help explain the large male frequency variation observed in other androdioecious species of Oleaceae: some species show only androdioecious populations, as P. angustifolia, whereas others show populations either completely hermaphrodite or androdioecious.  相似文献   

8.
Androdioecy is a mixed‐mating system in which there are males and hermaphrodites but no pure females. Few species exhibit such a mating system. Eulimnadia texana is a branchiopod crustacean that has recently been identified as an androdioecious species. This system is ideal for testing questions related to the evolution of sexual reproduction. We are testing a model that predicts androdioecy to be a stable mixed‐mating system under certain conditions. Specifically, we investigated whether encounters between males and hermaphrodites are random or if either sex seeks out the other for mating. Focal male or hermaphrodite clam shrimp were presented with stimulus shrimp of the other sex or kept alone. Swimming speed and time spent within different areas of a test chamber were recorded. Males did not alter mean swimming speed or spend more time than expected by chance near partitioned hermaphrodites. Hermaphrodites, however, decreased mean swimming speed in the presence of males and also spent more time than expected by chance near partitioned males, suggesting that hermaphrodites respond to male chemical and/or visual stimuli. Modified swimming behaviour probably facilitates inter‐sexual contact, thereby increasing opportunities for out‐crossing above that expected by random encounters.  相似文献   

9.
Resource allocation to male and female functions was investigated in Thymus vulgaris L. (thyme), a gynodioecious species, in which females produce twice as many seeds as hermaphrodites. Negative correlations were found between male and female fertility of hermaphrodites, providing evidence of a trade-off. There was a high variability in sexual investment, some of the hermaphrodites functioning almost as males, and others almost as females. Estimation of the relative cost of male and female gametes showed that the female advantage in seed production was mainly due to reallocation of the resources not allocated to male function into female function. The determination of sex allocation was shown to have a genetic component, and there were some evidence that an interaction between nuclear and cytoplasmic genomes was involved.  相似文献   

10.
The name Hydra attenuata Pallas is currently applied to the wrong animal. The common brown polyp, which is widely called H. attenuata, was described by Pallas (1766) as Hydra vulgaris. The name H. attenuata Pallas originally referred to an uncommon pale polyp, currently known as H. circumcincta Schulze. The history of this confusion is analysed here. The taxonomy of hydra was in disarray during the 18th and 19th centuries, and was clarified in 1917 with the monograph of Schulze. But Schulze misapplied the name for the common hydra, H. vulgaris, to an unusual form and thus was led to assign the name of a rare hydra, H. attenuata, to the common type. Schulze redescribed the rare, pale hydra that Pallas had named H. attenuata as H. circumcincta. The correct name of the common European brown, stalkless hydra is thus H. vulgaris Pallas, 1766. The name H. attenuata has priority for the uncommon pale hydra, but because of disuse of this application of the name, the pale hydra should be recognized by the current, generally accepted binominal H. circumcincta Schulze, 1914.  相似文献   

11.
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well‐studied androdioecious species consisting mostly of self‐fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two‐step mathematical model of the evolutionary pathway from a male–female species to a selfing‐hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self‐fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self‐fertilizers if the fitness of selfed offspring exceeds one‐half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male–female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand‐off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand‐off may be an increase in the longevity of the androdioecious mating system.  相似文献   

12.
Androdioecy was first described by Darwin in his seminal work on barnacle diversity; he identified males and hermaphrodites in the same reproductive population. Today, we realize that many androdioecious plants and animals share astonishing similarities, particularly with regard to their evolutionary history and mating system. Notably, these species were ancestrally dioecious, and their mating system has the following characteristics: hermaphrodites self‐fertilize frequently, males are more successful in large mating groups, and males have a mating advantage. A male mating advantage makes androdioecy more likely to persist over evolutionary times. Androdioecious barnacles, however, appear to persist as an outlier with a different evolutionary trajectory: they originate from hermaphroditic species. Although sexual systems of androdioecious barnacles are known, no information on the mating system of androdioecious barnacles is available. This study assessed the mating system of the androdioecious barnacle Chelonibia testudinaria. In contrast to other androdioecious species, C. testudinaria does not self‐fertilize, males do not have a mating advantage over hermaphrodites, and the average mating group is quite small, averaging only three individuals. Mating success is increased by proximity to the mate and penis length. Taken together, the mating system of C. testudinaria is unusual in comparison with other androdioecious plants and animals, and the lack of a male mating advantage suggests that the mating system alone does not provide an explanation for the maintenance of androdioecy in this species. Instead, we propose that sex‐specific life history equalizes male and hermaphroditic overall fitness.  相似文献   

13.
Abstract The jacky dragon, Amphibolurus muricatus (White, ex Shaw 1790) is a medium sized agamid lizard from the southeast of Australia. Laboratory incubation trials show that this species possesses temperature‐dependent sex determination. Both high and low incubation temperatures produced all female offspring, while varying proportions of males hatched at intermediate temperatures. Females may lay several clutches containing from three to nine eggs during the spring and summer. We report the first field nest temperature recordings for a squamate reptile with temperature‐dependent sex determination. Hatchling sex is determined by nest temperatures that are due to the combination of daily and seasonal weather conditions, together with maternal nest site selection. Over the prolonged egg‐laying season, mean nest temperatures steadily increase. This suggests that hatchling sex is best predicted by the date of egg laying, and that sex ratios from field nests will vary over the course of the breeding season. Lizards hatching from eggs laid in the spring (October) experience a longer growing season and should reach a larger body size by the beginning of their first reproductive season, compared to lizards from eggs laid in late summer (February). Adult male A. muricatus attain a greater maximum body size and have relatively larger heads than females, possibly as a consequence of sexual selection due to male‐male competition for territories and mates. If reproductive success in males increases with larger body size, then early hatching males may obtain a greater fitness benefit as adults, compared to males that hatch in late summer. We hypothesize that early season nests should produce male‐biased sex ratios, and that this provides an adaptive explanation for temperature‐dependent sex determination in A. muricatus.  相似文献   

14.
The importance of ecological factors such as sex lability, spatial segregation, and resource allocation in the evolution of dioecy were examined in Schiedea globosa. S. globosa is a subdioecious species with equal numbers of plants possessing strictly male or female function and a small proportion of hermaphrodites. The propensity for labile sex expression was under both environmental and genetic control; some plants with male function became hermaphroditic (by producing female flowers) under better growing conditions in the field and in the greenhouse. There was some spatial segregation of the sexes. Because of sex lability, more hermaphrodites than males occurred on moister slopes. Although there were not measurable sex-related differences in mortality within or between two flowering seasons, more females than males and hermaphrodites occurred at the bottom of slopes. Males and females produced the same number of ramets and inflorescences, but females had a greater number of flowers per inflorescence. Males and females had the same number of ovules (vestigial in males), but females had larger ovules and longer stigmas. Hermaphrodites and males had the same amount of pollen per flower despite the production of fruit by the hermaphrodites. In hermaphrodites, there was no apparent tradeoff within flowers between pollen production and ovule production. These results indicate that spatial segregation, sex lability, and environmental conditions influence allocation patterns of S. globosa, and in combination with high inbreeding depression and selling rates, may promote the further evolution of dioecy in S. globosa.  相似文献   

15.
According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male‐biased sex‐ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.  相似文献   

16.
If maturation is more costly for females, they may need more distinct environmental cues to induce sexual reproduction than males. We verified this hypothesis by comparing the indirect costs of maturation to males and females of the heterogonic Hydra oligactis, reproducing both asexually and sexually. The laboratory experiments revealed that males mature 2 weeks earlier than the first females at falling temperatures simulating the natural conditions that precede sexual reproduction. The difference between the energy costs of maturation for males versus females has been considered a likely factor responsible for the observed difference in maturation time. Available food supply positively affected the percentage of sexually mature females, indicating that females are more sensitive to food limitation than males. The number of gonads was correlated positively with the size of mature hydra for both males and females. However, males produced twice as many testes as ovaries produced by females. We postulate that females are induced later than males in order to prevent gonadal development after an unseasonable drop in temperature. As sexual reproduction in H. oligactis interferes with asexual budding, under favorable conditions for asexual proliferation unnecessary gonadal development decreases an individual’s fitness through reduction of the number of produced offspring.  相似文献   

17.
Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co‐occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non‐CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine‐scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex‐ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non‐CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non‐CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.  相似文献   

18.
Abstract. The sexual system of two peppermint shrimps, Lysmata bahia and Lysmata intermedia, inhabiting intertidal fossil coral terraces at Bocas del Toro, on the Caribbean coast of Panama, was examined. Dissections suggested that the population of each species consisted of functional males and functional simultaneous hermaphrodites. Males have cincinulli and appendices masculinae on the first and second pair of pleopods, respectively, gonopores located at the coxae of the third pair of walking legs, and ovotestes with a well‐developed male portion full of sperm, but an undeveloped female portion. Hermaphrodites lacked appendices masculinae and cincinulli. However, they have male gonopores and ovotestes with well‐developed ovaries full of mature oocytes and testes with sperm. When hermaphrodites were maintained in pairs, both molted and spawned eggs (to beneath abdomen) that continued developing after 3 d, demonstrating that hermaphrodites can reproduce as males and inseminate other hermaphrodites acting as females. The possibility of self‐fertilization or parthenogenetic reproduction was tested and disregarded, because hermaphrodites reared in isolation spawned oocytes that failed to develop, disappearing from the abdomen after 2 d. Males reared in pairs mature as hermaphrodites in <50 d, showing the ability of males to mature as hermaphrodites. These results demonstrate that L. bahia and L. intermedia are protandric simultaneous hermaphrodites, as reported for all species of this genus whose sexual system has been examined. However, the studied species featured a lifestyle, termed “tropical‐low abundance,” here not recognized previously for the genus; they occur in low abundances in tropical environments, they do not develop symbiotic associations with sessile invertebrates, and they are not conspicuously colored. Information on the sexual systems and lifestyles of more species needs to be examined before these observations can be placed into a comparative context within the genus.  相似文献   

19.
Within-species variation in animal body size predicts major differences in life history, for example, in reproductive development, fecundity, and even longevity. Purely from an energetic perspective, large size could entail larger energy reserves, fuelling different life functions, such as reproduction and survival (the “energy reserve” hypothesis). Conversely, larger body size could demand more energy for maintenance, and larger individuals might do worse in reproduction and survival under resource shortage (the “energy demand” hypothesis). Disentangling these alternative hypotheses is difficult because large size often correlates with better resource availability during growth, which could mask direct effects of body size on fitness traits. Here, we used experimental body size manipulation in the freshwater cnidarian Hydra oligactis, coupled with manipulation of resource (food) availability to separate direct effects of body size from resource availability on fitness traits (sexual development time, fecundity, and survival). We found significant interaction between body size and food availability in sexual development time in both males and females, such that large individuals responded less strongly to variation in resource availability. These results are consistent with an energy reserve effect of large size in Hydra. Surprisingly, the response was different in males and females: small and starved females delayed their reproduction, while small and starved males developed reproductive organs faster. In case of fecundity and survival, both size and food availability had significant effects, but we detected no interaction between them. Our observations suggest that in Hydra, small individuals are sensitive to fluctuations in resource availability, but these small individuals are able to adjust their reproductive development to maintain fitness.  相似文献   

20.
This study documents the comparative success of seeds and seedlings of the perennial gynodioecious-gynomonoecious weed, Silene vulgaris, in the greenhouse. The importance of experimental design is stressed by comparing two different statistical analyses of the data. Seeds were obtained from artificial pollinations in the field: self-fertilization of hermaphrodites, and cross-fertilizations of both hermaphrodites and females. One-way analysis of variance using progeny type (selfed hermaphrodites, outcrossed hermaphrodites, and outcrossed females) as the treatment effect for each seed and seedling variable showed statistically discernable differences among progeny from different cross types. The significance of this type of ANOVA resulted from a reduced error term and positively-biased F ratios. A factorial design showed no significant differences due to type of progeny in seed mass, days to germination, leaf number, area, or biomass at six weeks of age. There were, however, significant differences among seeds attributable to maternal parent for all seed and seedling variables. A higher proportion of seeds from outcrossed individuals germinated compared to that from self-fertilization. When the data were analyzed to include and partition all sources of variation, differences among offspring appeared during germination, rather than during later development. Seed mass, cross type, and sex of maternal parent all significantly affected the likelihood of germination; however, they had decreasing predictive power, respectively. Inbreeding depression in Silene vulgaris may help maintain gynodioecy; however, the pleiotropic effects of both nuclear and cytoplasmic genes for sex expression also may affect fitness and the maintenance of females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号