首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Transport of amino acids (in vitro) in the rat pancreas is affected by the nutritional state of the animal. A fast of 24 h (young animals) or 48 h (adult animals) reduces the rate of amino acid uptake in the isolated rat pancreas in vitro. In contrast, refeeding of animals after a fast shows an increase in transport in young as well as adult animals. The effects of refeeding after a fast are mimicked to a significant extent by injection of mixtures of pancreozymin and carbamylcholine. Addition of these agents in vitro has no effect. The incorporation of amino acids into the total proteins of the rat pancreas follows the pattern of amino acid uptake. Even at high external levels of glycine (5 mM), incorporation increases although the glycine level in the cell is in excess of 25 mM. Reduction of glycine uptake by ouabain by 75% results in a substantial (44%) diminution of amino acid incorporation into proteins. The data suggest that inhibition of amino acid incorporation under the various metabolic conditions examined is due largely to a decreased availability of amino acids.  相似文献   

2.
The uptake of a number of amino acids and dipeptides by cells and spheroplasts of Bacteroides melaninogenicus was stimulated by the presence of glutamine; 50 mM glutamine induced maximum uptake of glycine or alanine, and glutamine stimulated the uptake of glycine over a wide concentration range (0.17 to 170 mM). Glutamine stimulated the uptake of the dipeptides glycylleucine and glycylproline at significantly faster rates compared with glycine and leucine. The amino acids whose uptake was stimulated by glutamine were incorporated into trichloroacetic acid-precipitable material, and the inclusion of chloramphenicol or puromycin did not affect this incorporation. The uptake of glutamine by cells was concentration dependent. In contrast, in the absence of chloramphenicol 79% of the glutamine taken up by cells supplied with a high external concentration (4.4 mM) was trichloroacetic acid soluble. Glutamate and alpha-ketoglutarate were identified in the intracellular pool of glutamine-incubated spheroplasts. The amino acids and peptides were incorporated into cell envelope material, and a portion (30 to 50%) of the incorporated amino acids could be removed by trypsinization or treatment with papain. The effect of glutamine was depressed by inhibitors of energy metabolism, suggesting that glutamine-stimulated incorporation is an energy-mediated effect.  相似文献   

3.
1. Inhibition of the rate of incorporation of [(35)S]methionine into protein by phenylalanine was more effective in 18-day-old than in 8-day-old or adult rat brain. 2. Among the subcellular fractions incorporation of [(35)S]methionine into myelin proteins was most inhibited in 18-day-old rat brain. 3. Transport of [(35)S]methionine and [(14)C]leucine into the brain acid-soluble pool was significantly decreased in 18-day-old rats by phenylalanine (2mg/g body wt.). The decrease of the two amino acids in the acid-soluble pool equalled the inhibition of their rate of incorporation into the protein. 4. Under identical conditions, entry of [(14)C]glycine into the brain acid-soluble pool and incorporation into protein and uptake of [(14)C]acetate into lipid was not affected by phenylalanine. 5. It is proposed that decreased myelin synthesis seen in hyperphenylalaninaemia or phenylketonuria may be due to alteration of the free amino acid pool in the brain during the vulnerable period of brain development. Amyelination may be one of many causes of mental retardation seen in phenylketonuria.  相似文献   

4.
Abstract— Of the amino acids found in the CNS of 10-day-old rats the concentration of glycine alone was significantly higher in the spinal cord than in all other regions. Spinal levels of glycine, cystathionine, isoleucine and lysine from 1- and 10-day-old rats did not differ significantly from adult values, whereas the levels of most other amino acids, including GABA, glutamate, glutamine and taurine, were higher in the young animals than in the adults. Aspartate was the only amino acid found in lower concentration in the spinal cord of young animals than in adult animals. These and other observations support the conclusion that glycine is used as an inhibitory transmitter in rat spinal cord early in postnatal life. There was a general decrease in the activity of serine hydroxymethyltransferase and a slight increase in the activity of glycine:2-oxoglutarate aminotransferase in the CNS during development. The activity of neither enzyme correlated on a regional basis with the glycine content. The high level of hydroxymethyltransferase activity in the cerebellum of 10-day-old rats suggests that the activity of this enzyme reflects cell growth rate.  相似文献   

5.
The synthesis of NAD and NADP by rat adipose tissue was measured in vitro. Nicotinamide-7-(14)C and NaH(2)(32)PO(4) were incorporated together into NAD with a (32)P/(14)C ratio of 1.82 and nicotinic-7-(14)C acid and NaH(2)(32)PO(4) with a ratio of 1.94. Nicotinic acid stimulated, by 90%, lipogenesis from glucose-U-(14)C by rat adipose tissue in vitro. Glucose plus insulin and refeeding for 48 hr after a 48 hr fast markedly increased the incorporation of nicotinic-7-(14)C into NAD in rat epididymal fat pads in vitro, but neither fructose, L-glutamine, nor insulin alone increased the synthesis of NAD in this tissue. Glucose-1-(14)C, ribose-1-(14)C, and to a greater extent glucose-6-(14)C are incorporated into the NAD of rat adipose tissue. Fasting followed by refeeding sharply increased the radioactivity of NAD-(14)C formed from glucose-1-(14)C and glucose-6-(14)C but not from ribose-1-(14)C. Increasing the ribose concentration from 2 mM to 10 mM increased its incorporation into adipose tissue NAD twofold. The nicotinic-7-(14)C acid incorporation into NAD increased over the 1st hr of incubation and remained constant for the next 3 hr. The concentration of NAD in the fat pads showed a similar response to the time of incubation. NADP concentrations increased over the entire 4 hr incubation period as did the incorporation of nicotinic-7-(14)C acid into NADP. The results of this study suggest that NAD is synthesized de novo by rat adipose tissue in vitro and that this synthesis is increased by factors which stimulate lipogenesis.  相似文献   

6.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

7.
The second member of the PAT (proton-coupled amino acid transporter) family of H(+)-coupled, pH-dependent, Na(+)-independent amino acid transporters was isolated from a rat lung cDNA library. The cDNA for rat PAT2 is 2396bp in length, including 70bp of 5'UTR and a poly(A) tail. The transporter gene, consisting of 10 exons, is located on rat chromosome 10q22. The cDNA codes for a protein of 481 amino acids with 72% identity (over 449 amino acids) with rat PAT1. Tissue expression studies demonstrate that mRNA abundance is generally low with highest levels being detected in lung and spleen, with lower levels in the brain, heart, kidney, and skeletal muscle. Functional expression in either mammalian cells or Xenopus laevis oocytes demonstrates that rat PAT2 mediates pH-dependent, Na(+)-independent uptake of glycine, proline, and alpha(methyl)aminoisobutyric acid (MeAIB). In conclusion PAT2 has a limited tissue distribution, higher affinity (Michaelis-Menten constant for glycine uptake between 0.49 and 0.69mM), and distinct substrate specificity compared to PAT1.  相似文献   

8.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

9.
An in vitro study of bile acid-CoA:amino acid N-acyltransferase activity of rat liver was undertaken in order to determine whether separate amino acid-specific enzymes catalyzed the formation of glycine and taurine conjugates of bile acids as postulated by others. Polyacrylamide gel electrophoresis of 200-fold purified enzyme localized the glycine- and taurine-dependent activities to a single band. Both activities were optimal at pH 7.8 and showed similar loss of activity at pH 6.0, pH 9.0, in the presence of 5,5'-dithiobis(2-nitrobenzoic acid), and at temperatures exceeding 50 degrees. With the purified fraction, Km for glycine was 31 mM and Km for taurine was 0.8 mM. Km for several bile acid-CoA substrates was approximately 20 micron and independent of the amino acid acceptor. Only amino acids with terminal alpha- or beta-amino groups were active as acyl acceptors. Acyl donors were limited to bile acid-CoA derivatives. The data support the conclusion that the rat has a single bile acid-CoA:amino acid N-acyltransferase. The substrate kinetics are consistent with previous observations that taurine conjugates predominate in rat bile at normal hepatocellular concentrations of glycine and taurine.  相似文献   

10.
Feral and laboratory flocks of rock doves (Columbalivia) show a pattern of grouped sequential exploitation when simultaneously presented with two dispersed, depleting patches of seed. This behavior contrasts with the ideal free distribution pattern shown when patches are small and concentrated. Grouped sequential exploitation consists of two phases: all pigeons first land together and feed at one patch, then leave one by one for the other patch. Departure times of individuals for the second patch are correlated with feeding rate at patch 1, which is in turn correlated with position in the dominance hierarchy. The decision to switch from patch 1 to patch 2 improves individual feeding rates in all cases, but is done slightly later than it should according to optimal foraging theory.  相似文献   

11.
Characterization of lamin proteins in BHK cells   总被引:5,自引:0,他引:5  
Lamins are structural proteins found in rat liver nuclear envelope and are major constituents of the nuclear matrix. 2-D gel electrophoresis indicates that BHK cell nuclear matrix is composed of four major proteins (62 kD, 68 kD, 70 kD and 72 kD). Three of these proteins are very similar to lamins A, B and C of rat liver nuclear envelope according to their molecular mass and isoelectric points. An anti-serum specific to BHK matrix proteins has been raised. On 2-D immunoblot, this serum detects all the 62, 68 and 72 kD polypeptide isovariants but only one of the two isovariants of the 70 kD polypeptide. Rat lamins A, B and C react with the anti-BHK matrix serum. However, when a monoclonal antibody to rat liver lamins A, B and C is used (Burke, B, Tooze, J & Warren, G, EMBO j 2 (1983) 361 [23]), only the 72 kD (lamin A-like) and the 62 kD (lamin C-like) BHK polypeptides are detected. Our results suggest that although a strong similarity exists between BHK and rat lamins, there is no identical cross-reactivity between the two species.  相似文献   

12.
The renal clearance of amino acids was measured in canine pups between 5 days and 12 weeks of age. The reabsorption of glycine was incomplete at 5 and 21 days, indicating a physiologic aminoaciduria of immaturity. An adult pattern of 97–100% reabsorption appeared by 8 weeks of age. The uptake of glycine by isolated renal tubules from 5-day-old, 3-month-old and adult dogs was examined towards an understanding of the events underlying this aminoaciduria. The initial uptake of 0.042 mM glycine by isolated tubules from the newborn was lower than that of the adult, but after 30 min of incubation the newborn surpassed the adult. A steady state of uptake was not achieved by the newborn even after 90 min of incubation, while it was achieved in the adult after 30 min. The uptake by the 3-month-old tubules resembled the adult at the early time points and the newborn at later points. With 1.032 mM glycine, a similar relationship of uptake between adult and newborn tubules was found, except with this concentration, the uptake by both the newborn and adult tubules reached a steady state. The concentration dependence of glycine uptake showed two saturable transport systems with similar apparent Km and Vmax values after 30 min of incubation for all three age groups. Determination of glycine flux by compartmental analysis revealed decreased influx and efflux in the newborn, but with a greater decrease in efflux, compared to adult. These changes of influx and efflux which accompany renal tubule maturation could contribute to the increased intracellular amino acid levels and decreased reabsorption of amino acids seen in the immature dog.  相似文献   

13.
Phenylalanine in conjuction with p-chlorophenylalanine or α-methylphenylalanine was administered to suckling rats to induce hyperphenylalaninemia reminiscent of untreated phenylketonuria, and developmental parameters were monitored. The experimental model utilizing p-chlorophenylalanine was found to be unsatisfactory, in that the drug had general deleterous effects on growth, numerous side effects including increased mortality, and affected brain levels of biogenic monoamine neurotransmitters. The model utilizing α-methylphenylalalanine was relatively free from nonspecific effects and thus, changes observed in the animals were attributable to expereimental phenylketonuria. The latter animals had slightly decreased body and brain weights, and exhibited grossly elevated serum phenylalanine and urinary excretion of phenylketone metabolites. Hyperphenylalaninemia produced greatly disrupted brain amino acids at 10 days of age (prior to the formalization of the blood-brain barrier and specific transport systems) which was limited by 30 days of age to changes in glycine, γ-aminobutyric acid and the aliphatic and aromatic amino acids which compete for uptake in t he brain by a common carrier. These animals also exhibited a myelin deficit and changes in proteins from isolated nerve cell preparations. Mature animals which had daily treatment up to 60 days of age results obtained with animal models and the clinical findings in untreated phenylketonuric patients.  相似文献   

14.
Abstract— Cysteine uptake by rat brain synaptosomes occurs by active transport. The uptake by synaptosomes isolated from newborn brain is slower and the concentration gradient achieved is lower than that observed in adult tissue. Synaptosomal fractions from both adult and newborn rat brains accumulate cysteine by two saturable systems. The calculated parameters show that the maximum rates of cysteine uptake in adult synaptosomes are approximately twice that observed in newborn synaptosomes for both the high and low affinity systems. The uptake by the high affinity system is sodium dependent and is inhibited by glycine and dibasic amino acids. Uptake by synaptosomes from 14-day-old animals is close to that observed in adult tissue. The uptake of cysteine differs greatly from that of cystine since the oxidized form, cystine, is taken up more slowly by systems with low affinities which are sodium independent, do not interact with dibasic amino acids and are independent of age.  相似文献   

15.
Abstract: Uptake of L-glutamine (2 mM) by rat brain cortex slices against a concentration gradient is markedly inhibited (40%) by branched-chain Lamino acids (1 mM), L-phenylalanine (1 mM), or L-methionine (1 mM); that of L-asparagine (2 mM) is much less affected by these amino acids. Other amino acids investigated have little or no effect on cerebral L-glutamine uptake. The suppressions of L-glutamine uptake by the inhibitory amino acids are apparently blocked by high [K+], which itself has little or no effect on glutamine uptake. This abolition of suppression is partly explained by high [K+] retention of endogenous glutamine; in the absence of Ca2+ such retention disappears. The inhibitory amino acids (1 mM) also enhance the release of endogenous glutamine, exogenous glutamine with which slices have been loaded, or glutamine synthesized in the slices from exogenous glutamate. The enhanced release of endogenous glutamine is diminished by high [K+]. The suppression of glutamine uptake by the branched-chain amino acids is independent of the concentration of glutamine at low concentrations (0.25–0.5 mM), indicating non-competition, but is reduced with high concentration of glutamine. The inhibition by L-phenylalanine is noncompetitive. L-Glutamine (2 mM) exerts no inhibition of the cerebral uptakes of the branched-chain L-amino acids or Lphenylalanine (0.25–2 mM). The inhibitory amino acids are as active in suppressing L-glutamine uptake with immature rat brain slices as with adult, although the uptake, against a gradient, of L-glutamine in the infant rat brain is about one-half that in the adult. They are also just as inhibitory on the concentrative uptake of L-glutamine by a crude synaptosomal preparation derived from rat brain cortex. Such a nerve ending preparation takes up L-glutamine (0.25 mM), against a gradient, at about ninefold the rate at which it is taken up by cortex slices (for equal amounts of protein), and the uptake process is markedly suppressed by high [K+] in contrast to the effects of high [K+] with slices. The possible physiological and pathological consequences of the suppression of glutamine uptake are discussed.  相似文献   

16.
17.
We studied protein synthesis, lipid synthesis and CO2 production by oxidation of glycine, alanine and leucine by slices of rat hippocampus during the period of brain growth spurt. The metabolism of the three amino acids decreased with the age of the animals, A major reduction was observed in protein synthesis, which was 4 times higher at 7 days of age than at 21 days of age for all amino acids studied. Glycine oxidation to CO2 was twice as high as alanine oxidation and ten times higher than leucine oxidation. The major pathway of leucine utilization was incorporation into proteins. Glycine was the amino acid that had the highest metabolic rate.  相似文献   

18.
Protein synthesis in isolated cell nuclei   总被引:45,自引:0,他引:45       下载免费PDF全文
1. Nuclei prepared from calf thymus tissue in a sucrose medium actively incorporate labelled amino acids into their proteins. This is an aerobic process which is dependent on nuclear oxidative phosphorylation. 2. Evidence is presented to show that the uptake of amino acids represents nuclear protein synthesis. 3. The deoxyribonucleic acid of the nucleus plays a role in amino acid incorporation. Protein synthesis virtually ceases when the DNA is removed from the nucleus, and uptake resumes when the DNA is restored. 4. In the essential mechanism of amino acid incorporation, the role of the DNA can be filled by denatured or partially degraded DNA, by DNAs from other tissues, and even by RNA. Purine and pyrimidine bases, monoribonucleotides, and certain dinucleotides are unable to substitute for DNA in this system. 5. When the proteins of the nucleus are fractionated and classified according to their specific activities, one finds the histones to be relatively inert. The protein fraction most closely associated with the DNA has a very high activity. A readily extractable ribonucleoprotein complex is also extremely active, and it is tempting to speculate that this may be an intermediary in nucleocytoplasmic interaction. 6. The isolated nucleus can incorporate glycine into nucleic acid purines, and orotic acid into the pyrimidines of its RNA. Orotic acid uptake into nuclear RNA requires the presence of the DNA. 7. The synthesis of ribonucleic acid can be inhibited at any time by a benzimidazole riboside (DRB) (which also retards influenza virus multiplication (11)). 8. The incorporation of amino acids into nuclear proteins seems to require a preliminary activation of the nucleus. This can be inhibited by the same benzimidazole derivative (DRB) which interferes with RNA synthesis, provided that the inhibitor is present at the outset of the incubation. DRB added 30 minutes later has no effect on nuclear protein synthesis. These results suggest that the activation of the nucleus so that it actively incorporates amino acids into its proteins requires a preliminary synthesis of ribonucleic acid. 9. Together with earlier observations (27, 28) on the incorporation of amino acids by cytoplasmic particulates, these results show that protein synthesis can occur in both nucleus and cytoplasm.  相似文献   

19.
The SLC36 family of transporters consists of four genes, two of which, SLC36A1 and SLC36A2, have been demonstrated to code for human proton-coupled amino acid transporters or hPATs. Here we report the characterization of the fourth member of the family, SLC36A4 or hPAT4, which when expressed in Xenopus laevis oocytes also encodes a plasma membrane amino acid transporter, but one that is not proton-coupled and has a very high substrate affinity for the amino acids proline and tryptophan. hPAT4 in Xenopus oocytes mediated sodium-independent, electroneutral uptake of [(3)H]proline, with the highest rate of uptake when the uptake medium pH was 7.4 and an affinity of 3.13 μM. Tryptophan was also an excellently transported substrate with a similarly high affinity (1.72 μM). Other amino acids that inhibited [(3)H]proline were isoleucine (K(i) 0.23 mM), glutamine (0.43 mM), methionine (0.44 mM), and alanine (1.48 mM), and with lower affinity, glycine, threonine, and cysteine (K(i) >5 mM for all). Of the amino acids directly tested for transport, only proline, tryptophan, and alanine showed significant uptake, whereas glycine and cysteine did not. Of the non-proteogenic amino acids and drugs tested, only sarcosine produced inhibition (K(i) 1.09 mM), whereas γ-aminobutyric acid (GABA), β-alanine, L-Dopa, D-serine, and δ-aminolevulinic acid were without effect on [(3)H]proline uptake. This characterization of hPAT4 as a very high affinity/low capacity non-proton-coupled amino acid transporter raises questions about its physiological role, especially as the transport characteristics of hPAT4 are very similar to the Drosophila orthologue PATH, an amino acid "transceptor" that plays a role in nutrient sensing.  相似文献   

20.
Biotin-mediated protein biosynthesis   总被引:1,自引:1,他引:0  
The effect of administration of biotin to biotin-deficient rats on protein biosynthesis was studied. Biotin treatment resulted in stimulation by more than twofold of amino acid incorporation into protein, both in vivo and in vitro in rat liver, pancreas, intestinal mucosa and skin. Analysis of the products of amino acid incorporation into liver proteins in vivo and in vitro indicated that the synthesis of some proteins was stimulated more than twofold, but others were not stimulated at all. This indicates a specificity in the stimulation of protein synthesis mediated by biotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号