首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The toxicity of fipronil and dieldrin was determined in one susceptible laboratory strain and seven insecticide-resistant field-collected strains of Blattella germanica (L). The Zo960302 and Ga021001 strains were 1,270- and 2,030-fold resistant to dieldrin and 15- and 14-fold resistant to fipronil. The Su960304 and Od010803 strains were 15- and 13-fold resistant to dieldrin and two- and four-fold resistant to fipronil. Three strains showed no or a low level of resistance to dieldrin and fipronil. Crosses were performed between the susceptible strain Danish Pest Infestation Laboratory (DPIL)-SUS and the resistant strains Zo960302 and Su960304 and resistance to dieldrin and fipronil were intermediate compared with the susceptible and the resistant strains. Backcrosses to both of the parental strains showed cosegregation of dieldrin and fipronil resistance. The toxicity of dieldrin and fipronil was correlated when compared at LD50, and 93% of the observed variation in LD50 of fipronil can be ascribed to variation among predictions based on the value of LD50 of dieldrin. The frequency of the A302S substitution in the resistance to dieldrin (Rdl) gene in the highly dieldrin- and fipronil-resistant strains Zo960302 and Ga021001 and the moderately resistant Su960304 was 0.97, 1.0, and 0.38, respectively. We consider the connection between the frequency of the Rdl mutation and dieldrin and fipronil resistance a causal connection and not merely a coincidence.  相似文献   

2.
The phenylpyrazole insecticide fipronil blocks resistance to dieldrin (RDL) γ-aminobutyric acid (GABA) receptors in insects, thereby impairing inhibitory neurotransmission. Some insect species, such as the diamondback moth (Plutella xylostella), possess more than one Rdl gene. The involvement of multiple Rdls in fipronil toxicity and resistance remains largely unknown. In this study, we investigated the roles of two Rdl genes, PxRdl1 and PxRdl2, in P. xylostella fipronil action. In Xenopus oocytes, PxRDL2 receptors were 40 times less sensitive to fipronil than PxRDL1. PxRDL2 receptors were also less sensitive to GABA compared with PxRDL1. Knockout of the fipronil-sensitive PxRdl1 reduced the fipronil potency 10-fold, whereas knockout of the fipronil-resistant PxRdl2 enhanced the fipronil potency 4.4-fold. Furthermore, in two fipronil-resistant diamondback moth field populations, PxRdl2 expression was elevated 3.7- and 4.1-fold compared with a susceptible strain, whereas PxRdl1 expression was comparable among the resistant and susceptible strains. Collectively, our results indicate antagonistic effects of PxRDL1 and PxRDL2 on fipronil action in vivo and suggest that enhanced expression of fipronil-resistant PxRdl2 is potentially a new mechanism of fipronil resistance in insects.  相似文献   

3.
The planthopper Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) is a serious insect pest of rice, Oryza sativa L., and has developed resistance to fipronil in Japan. Sequence analysis of L. striatellus RDL gamma-aminobutyric acid (GABA) receptor subunit (LS-RDL) genes from a fipronil-resistant population and a fipronil-susceptible strain identified the A2'N mutation (index number for M2 membrane-spanning region), that was previously implicated in fipronil resistance in the planthopper Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Nineteen of 21 fipronil-resistant L. striatellus individuals were genotyped as heterozygous for the A2'N mutation, suggesting that this mutation is associated with fipronil resistance and that most fipronil-resistant L. striatellus express wild-type and A2'N mutant LS-RDL simultaneously. To confirm the role of the A2'N mutation of LS-RDL, Drosophila Mel-2 cells were transfected with wild-type and A2'N mutant LS-RDL genes, either individually or together. A membrane potential assay showed that fipronil had no inhibitory effect at 10 microM on cells transfected with the A2'N mutant LS-RDL gene with or without the wild-type LS-RDL gene. By contrast, the IC50 value of fipronil for wild-type LS-RDL homomers was 14 nM. These results suggest that the A2'N mutation of the RDL GABA receptor subunit confers fipronil resistance in L. striatellus as well as S. furcifera.  相似文献   

4.
5.
A mutant of Arabidopsis thaliana, two hundred times more resistant to the imidazolinone herbicide imazapyr than wild-type plants, was isolated by direct selection of seedlings from a mutagenized population. Genetic analysis showed that resistance is due to a single dominant nuclear mutation that could not be separated by recombination from a mutation in the CSR1 gene encoding acetohydroxy acid synthase. Acetohydroxy acid synthase activity in extracts isolated from the mutant was 1000-fold more resistant to inhibition by imazapyr than that of the wild type. The resistant enzyme activity cosegregated with whole plant resistance. These data strongly suggest that the mutation is an allele of CSR1 encoding an imazapyr-resistant AHAS.  相似文献   

6.
《The Journal of cell biology》1984,99(4):1441-1450
A heat shock-resistant mutant of the budding yeast Saccharomyces cerevisiae was isolated at the mutation frequency of 10(-7) from a culture treated with ethyl methane sulfonate. Cells of the mutant are approximately 1,000-fold more resistant to lethal heat shock than those of the parental strain. Tetrad analysis indicates that phenotypes revealed by this mutant segregated together in the ratio 2+:2- from heterozygotes constructed with the wild-type strain of the opposite mating type, and are, therefore, attributed to a single nuclear mutation. The mutated gene in the mutant was herein designated hsr1 (heat shock response). The hsr1 allele is recessive to the HSR1+ allele of the wild-type strain. Exponentially growing cells of hsr1 mutant were found to constitutively synthesize six proteins that are not synthesized or are synthesized at reduced rates in HSR1+ cells unless appropriately induced. These proteins include one hsp/G0-protein (hsp48A), one hsp (hsp48B), and two G0-proteins (p73, p56). Heterozygous diploid (hsr1/HSR1+) cells do not synthesize the proteins constitutively induced in hsr1 cells, which suggests that the product of the HSR1 gene might negatively regulate the synthesis of these proteins. The hsr1 mutation also led to altered growth of the mutant cells. The mutation elongated the duration of G1 period in the cell cycle and affected both growth arrest by sulfur starvation and growth recovery from it. We discuss the problem of which protein(s) among those constitutively expressed in growing cells of the hsr1 mutant is responsible for heat shock resistance and alterations in the growth control.  相似文献   

7.
Bioassays (at generation 1, G1) using fipronil, spinosad, indoxacarb, and Bacillus thuringiensis toxins Cry1Ac and Cry1Ca with a newly collected field population of Plutella xylostella (L.) from farmers fields in the Cameron Highlands, Malaysia, indicated a resistance ratio of approximately 400-, 1,170-, 330-, 2,840-, and 1,410-fold, respectively, compared with a laboratory-susceptible population of P. xylostella (ROTH). At G3, the field-derived population was divided into two subpopulations, one was selected (G3 to G7) with fipronil (fip-SEL), whereas the second was left unselected (UNSEL). Bioassays at G8 found that selection with fipronil gave a resistance ratio of approximately 490 compared with UNSEL and approximately 770 compared with ROTH. The resistance ratio for fipronil, spinosad, indoxacarb, Cry1Ac, and Cry1Ca in the UNSEL population declined significantly by G8. Logit regression analysis of F1 reciprocal crosses between fip-SEL (at G8) and UNSEL indicated that resistance to fipronil in the fip-SEL population was inherited as an autosomal, incompletely recessive (D(LC) = 0.37) trait. At the highest dose of fipronil tested, resistance was completely recessive, whereas at the lowest dose it was incompletely recessive. A direct test of monogenic inheritance based on a backcross of F1 progeny with fip-SEL suggested that resistance to fipronil was controlled by a single locus. The fip-SEL population at G8 showed little change in its response to spinosad and indoxacarb compared with G1, whereas its susceptibility to Cry1Ac and Cry1Ca increased markedly over the selection period. This suggests that there may be some low level of cross-resistance between fipronil, spinosad, and indoxacarb.  相似文献   

8.
Populations of Plutella xylostella, extending over 3800 km in southern Australia, show no genetic structure as assessed by microsatellite markers; yet outbreaks of pyrethroid resistance occur sporadically in cropping areas. Since mutations in the para voltage-gated sodium channel gene have been implicated in pyrethroid resistance, we looked for DNA sequence variation at this target among Australian moths. We found two resistance mutations previously reported for this species (L1014F and T929I), as well as a novel substitution (F1020S). Of the eight possible haplotypes formed by combinations of these three biallelic polymorphisms, only four were found in Australian populations: the wild-type allele (w), the kdr mutation allele (kdr) with only L1014F, the super-kdr-like combination of L1014F and T929I (skdrl), and the crashdown allele with only F1020S (cdr). Comparison of genotype frequencies among survivors of permethrin assays with those from untreated controls identified three resistant genotypes: skdrl homozygotes, cdr homozygotes and the corresponding heterozygote, cdr/skrdl - the heterozygote being at least as resistant as either homozygote. Spatial heterogeneity of allele frequencies was conspicuous, both across the continent and among local collections, consistent with reported spatial heterogeneity of pyrethroid resistance. Further, high resistance samples were sometimes associated with high frequency of cdr, sometimes high frequency of skdrl, or sometimes with a high combined cdr+skdrl frequency. The skdrl and cdr alleles explain a high proportion of the Australia-wide resistance variation. These data add to evidence that nerve insensitivity by mutations in the para-sodium channel gene is a common pyrethroid resistance mechanism in P. xylostella.  相似文献   

9.
10.
A field-collected colony of the diamondback moth, Plutella xylostella, had 31-fold resistance to Cry1C protoxin of Bacillus thuringiensis. After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous selection but decreased to 235-fold at G38 when selection ceased at G28. The Cry1C resistance in this strain was seen to be inherited as an autosomal and incompletely recessive factor or factors when evaluated using a leaf dip assay and recessive when evaluated using Cry1C transgenic broccoli. Saturable binding of (125)I-Cry1C was found with brush border membrane vesicles (BBMV) from both susceptible and Cry1C-resistant strains. Significant differences in Cry1C binding to BBMV from the two strains were detected. BBMV from the resistant strain had about sevenfold-lower affinity for Cry1C and threefold-higher binding site concentration than BBMV from the susceptible strain. The overall Cry1C binding affinity was just 2.5-fold higher for BBMV from the susceptible strain than it was for BBMV from the resistant strain. These results suggest that reduced binding is not the major mechanism of resistance to Cry1C.  相似文献   

11.
12.
Target site insensitivity and metabolic resistance mediated by esterases have been previously suggested to be involved in resistance to malathion in a field-derived strain (W) of Ceratitis capitata. In the present study, we have obtained the coding sequence for acetylcholinesterase (AChE) gene (Ccace) of C. capitata. An allele of Ccace carrying only a point mutation Gly328Ala (Torpedo numbering) adjacent to the glutamate of the catalytic triad was found in individuals of the W strain. Adult flies homozygotes for this mutant allele showed reduced AChE activity and less sensitivity to inhibition by malaoxon, showing that target site insensitivity is one of the factors of malathion resistance. In addition, all individuals from the resistant W strain showed reduced aliesterase activity, which has been associated with specific malathion resistance in higher Diptera. However, the alphaE7 gene (CcalphaE7), sequenced in susceptible and resistant individuals, did not carry any of the mutations associated with organophosphorus insecticide resistance in other Diptera. Another esterase mechanism, perhaps a carboxylesterase selective for malathion, in addition to mutant AChE, thus contributes to malathion resistance in C. capitata.  相似文献   

13.
王利华  吴益东 《昆虫学报》2008,51(3):277-283
本研究明确了kdr突变和解毒代谢在B型烟粉虱Bemisia tabaci对高效氯氰菊酯抗性中的作用。B型烟粉虱NJ品系相对于烟粉虱敏感品系(SUD-S,非B型)对高效氯氰菊酯有266倍的抗性。对NJ品系用高效氯氰菊酯进行群体筛选获得抗性为811倍的NJ-R1品系,对NJ品系进行单对交配筛选获得抗性达2 634倍的NJ-R2品系。在NJ,NJ-R1和NJ-R2品系间,酯酶、多功能氧化酶和谷胱甘肽S-转移酶活性无显著差异,说明在筛选过程中解毒代谢没有发生变化。PASA检测结果表明,NJ-R2品系钠离子通道基因L925I突变(kdr突变)频率为100%,NJ-R1品系为80.6%,NJ品系为55%。由此可见,kdr突变频率的增加是B型烟粉虱种群对高效氯氰菊酯抗性上升的主要原因。在NJ,NJ-R1和NJ-R2品系中,增效醚(PBO)对高效氯氰菊酯的增效作用均为20倍左右,而PBO对SUD-S品系没有任何增效作用。PBO能同时抑制烟粉虱的多功能氧化酶和酯酶,通过与TPP增效作用进行对比表明,在B型烟粉虱中PBO所产生的增效作用主要来源于对酯酶的抑制。因此,B型烟粉虱品系(NJ-R2,NJ-R1和NJ)与非B型SUD-S品系相比存在20倍左右的先天抗性,该先天抗性主要与B型烟粉虱的特有酯酶有关。在B型烟粉虱品系对高效氯氰菊酯的抗性中,抗性水平完全由kdr突变频率高低所决定。  相似文献   

14.
The intracellular concentrations of the polypeptides encoded by the two enolase (ENO1 and ENO2) and three glyceraldehyde-3-phosphate dehydrogenase (TDH1, TDH2, and TDH3) genes were coordinately reduced more than 20-fold in a Saccharomyces cerevisiae strain carrying the gcr1-1 mutation. The steady-state concentration of glyceraldehyde-3-phosphate dehydrogenase mRNA was shown to be approximately 50-fold reduced in the mutant strain. Overexpression of enolase and glyceraldehyde-3-phosphate dehydrogenase in strains carrying multiple copies of either ENO1 or TDH3 was reduced more than 50-fold in strains carrying the gcr1-1 mutation. These results demonstrated that the GCR1 gene encodes a trans-acting factor which is required for efficient and coordinate expression of these glycolytic gene families. The GCR1 gene and the gcr1-1 mutant allele were cloned and sequenced. GCR1 encodes a predicted 844-amino-acid polypeptide; the gcr1-1 allele contains a 1-base-pair insertion mutation at codon 304. A null mutant carrying a deletion of 90% of the GCR1 coding sequence and a URA3 gene insertion was constructed by gene replacement. The phenotype of a strain carrying this null mutation was identical to that of the gcr1-1 mutant strain.  相似文献   

15.
After mutagenization and selection, mutant Aspergillus niger strains resistant to certain agents were obtained. Seven of the mutants showed increased extracellular glucose oxidase (GOD), the level for individual cases ranged widely from 8.8 to over 138.5% in comparison with the parental strain. Studies of the relationship between method of selection and frequency of mutation showed that the highest frequency of positive mutations (15.8% and 17.3%) was obtained from mutants resistant to ethidium bromide (1 mmol 1-1) and sodium gluconate (45%), respectively. The time course of growth and enzyme production by the most active mutant AM-11 showed intra- and extracellular GOD activities to have increased about 2.2- and 2.4-fold, respectively, compared with the parental strain.  相似文献   

16.
Summary Chlorsulfuron and/or imazaquin resistant mutants of Chlamydomonas reinhardtii strain CW15 have been obtained and shown to have actolactate synthase (ALS) with altered sensitivity to one or both of these herbicides. Herbicide resistance in the three mutants described is allelic, and resistance appears to result from a dominant or semidominant mutation in a single, nuclear gene. Imazaquin and chlorsulfuron resistant ALS from imazaquin and chlorsulfuron resistant mutants, together with single-gene Mendelian inheritance of these phenotypes, suggests that ALS is the sole site of action of the two herbicides in Chlamydomonas. A high degree of cross resistance between the two herbicides was found in only one mutant. This mutant (IM-13) was selected for resistance to imazaquin and has a high level of in vitro resistance to both imazaquin (270-fold increased I50) and chlorsulfuron (900-fold increased I50). In another mutant selected for resistance to imazaquin (IMR-2), hyper-sensitivity to chlorsulfuron was found. A mutant selected for resistance to chlorsulfuron (CSR-5), had a substantial degree of resistance of chlorsulfuron (80-fold increased I50), but not to imazaquin (7-fold increased I50).  相似文献   

17.
南京地区小菜蛾的抗药性检测及初步分析   总被引:11,自引:0,他引:11  
吴敏  韩召军  孟建业  朱斌 《昆虫学报》2005,48(4):633-636
利用浸叶法对南京郊区小菜蛾Plutella xylostella的抗药性进行了监测,发现其对拟除虫菊酯类药剂的抗性较高,而对氟虫腈、辛硫磷、毒死蜱、多杀菌素和虫酰肼依然处于敏感阶段。利用抗性小菜蛾测试发现,氧化胡椒基丁醚(增效醚,简称PBO)对拟除虫菊酯具有显著的增效作用。室内敏感性恢复实验表明,在不接触药剂的条件下,小菜蛾对拟除虫菊酯的抗性迅速下降,繁殖10代以后,抗性维持在低抗水平。因此, 小菜蛾的抗药性治理,应充分利用不同药剂的轮换使用,避免单一使用某一品种,以延缓抗性的发展,同时可以利用PBO增强拟除虫菊酯的防治效果,保证这类药剂在小菜蛾防治中的作用。  相似文献   

18.
We isolated a spontaneous suppressor mutant complementing the acid-sensitive phenotype of Streptococcus mutans strain Tn-1, a mutant previously generated in this laboratory, defective in the activity of the dgk-encoded putative undecaprenol kinase. A relatively simple genetic method was developed to identify the suppressor mutation, based on selection for transformants containing two closely linked markers: a selectable allele of the unknown suppressor gene and an antibiotic resistance gene introduced on a suicide plasmid at random sites into the chromosome via homologous recombination. While we have not actually identified the original suppressor mutation, another mutated gene restoring acid resistance has been isolated, which suggests a possible mechanism of suppression.  相似文献   

19.
This paper reports the functional expression and pharmacological characterization of a full length complementary deoxyribonucleic acid (cDNA) (pIVY12) cloned from aHeliothis virescens fertilized egg cDNA library that encodes for a γ-aminobutyric acid (GABA) receptor subunit (HVRDL-Ser 285). Two electrode voltage clamp recordings ofXenopus oocytes expressing the HVRDL GABA-gated chloride channel revealed robust chloride ion conductance in response to GABA and the GABAA receptor agonist, muscimol. Baclofen, a GABAB agonist had no effect. Phenobarbital showed a positive dose-dependent allosteric modulatory effect, whereas the benzodiazepine, flunitrazepam, had no effect. Chloride conductance was depressed by the novel insecticide, fipronil ((±)-5-amino-1-(2,6 dichloro-α, α, α-trifluoro-p-tolyl)-4-trifluoromethyl-sulfinylpyrazole-3-carbonitrile) and the GABAA antagonist, picrotoxinin. The HVRDL GABA receptor was insensitive to blockage by dieldrin and the GABAA antagonist, bicuculline. The comparative actions of fipronil, picrotoxinin and dieldrin were examined on oocytes expressing theH. virescens wild-type (HVRDL-Ser 285), the site-directed mutant (HVRDL-Ala 285), theDrosophila melanogaster Rdl wild-type (DMRDL-Ala 302) and theRdl dieldrin resistant (DMRDL-Ser 302) homo-oligomeric GABA receptors. HVRDL-Ala 285 was 15-fold more sensitive to blockage by fipronil than HVRDL-Ser 285. DMRDL-Ala 302 and DMRDL-Ser-302 showed a similar level of sensitivity to blockage by fipronil. HVRDL-Ser 285 and DMRDL-Ser 302 exhibited a similar level of insensitivity to picrotoxinin. HVRDL-Ala 285 and DMRDL-Ala 302 showed a similar range of picrotoxinin sensitivity. DMRDL-Ala 302 and HVRDL-Ala 285 showed some sensitivity to blockage by dieldrin. Fipronil sensitivity was significantly altered by the serine to alanine mutation at position 285 in the M2 region of the HVRDL subunit, whereas no difference was observed between the DMRDL-Ser 302 and DMRDL-Ala 302 receptors.  相似文献   

20.
A disrupted allele (r1) of a cadherin gene (Ha_BtR) is genetically associated with incompletely recessive resistance to Bacillus thuringiensis toxin Cry1Ac in a Cry1Ac-selected strain (GYBT) of Helicoverpa armigera. The r1 allele of Ha_BtR was introgressed into a susceptible SCD strain by crossing the GYBT strain to the SCD strain, followed by repeated backcrossing to the SCD strain and molecular marker assisted family selection. The introgressed strain (designated as SCD-r1, carrying homozygous r1 allele) obtained 438-fold resistance to Cry1Ac, >41-fold resistance to Cry1Aa and 31-fold resistance Cry1Ab compared with the SCD strain; however, there was no significant difference in susceptibility to Cry2Aa between the integrated and parent strains. It confirms that the loss of function mutation of Ha_BtR alone can confer medium to high levels of resistance to the three Cry1A toxins in H. armigera. Reciprocal crosses between the SCD and SCD-r1 strains showed that resistance to Cry1Ac in the SCD-r1 strain was completely recessive. Life tables of the SCD and SCD-r1 strains on artificial diet in the laboratory were constructed, and results showed that the net replacement rate (R0) did not differ between the strains. The toxicity of two chemical insecticides, fenvalerate and monocrotophos, against the SCD-r1 strain was not significantly different from that to the SCD strain. However, larval development time of the SCD-r1 strain was significantly longer than that of the SCD strain, indicating a fitness cost of slower larval growth is associated with Ha_BtR disruption in H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号