首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
R D Green 《Life sciences》1980,26(5):399-406
The cyclic AMP content of dense cultures of C1300 murine neuroblastoma cells (clone N2a) was elevated after incubation for short periods of time in minimal volumes of serum-free medium (SFM) containing Ro 20 1724, a potent nonxanthine phosphodiesterase inhibitor. This elevation was prevented by theophylline, an adenosine antagonist, and was retarded by dipyridamole or benzylthioinosine, inhibitors of nucleoside transport. Cyclic AMP was also elevated by erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a potent adenosine deaminase inhibitor. This effect of EHNA was more pronounced in dense cultures, in small volumes of bathing medium, and was antagonized by dipyridamole. The addition of adenosine deaminase to growth medium or SFM lowered the cyclic AMP levels attained after the addition of Ro 20 1724. We conclude that N2a cells continually release adenosine into the growth or bathing medium via the nucleoside transport system and that sufficient concentrations may be achieved to tonically stimulate adenylate cyclase and influence processes controlled by the cyclic AMP:cyclic AMP-dependent protein kinase system.  相似文献   

2.
Adenosine has a potent depressant action on cerebral cortical neurons, including identified corticospinal cells. Adenosine 2′-, 3′- and 5′-phosphates, including adenosine 5′-imidodiphosphate, had comparable depressant actions and 2-chloroadenosine was an even more potent depressant. Inhibitors of adenosine uptake, hexobendine and papaverine, potentiated the actions of adenosine and adenosine 5′-monophosphate. Theophylline and caffeine antagonized the depressant actions of adenosine and adenosine 5′-monophosphate. The results are compatible with the hypothesis that adenosine depresses neurons by activating an extracellular receptor and that this effect can be blocked by theophylline and caffeine.  相似文献   

3.
Cyclic AMP-induced tyrosinase synthesis in Neurospora crassa   总被引:6,自引:0,他引:6  
Cyclic AMP induces the synthesis of tyrosinase in Neurospora crassa. Adenine, adenosine, 3′-AMP, 5′-AMP, and 2′,3′-cyclic AMP have no inductive effect while 8-bromocyclic AMP and dibutyryl cyclic AMP are good inducers. Caffeine and theophylline, inhibitors of cyclic AMP phosphodiesterase, also induce tyrosinase. A possible relationship between cyclic AMP induction and previously reported induction by cycloheximide is suggested.  相似文献   

4.
Cyclic adenosine 3′,5′-monophosphate (cyclic AMP) is present in saprophytic fast growing as well as pathogenic and non-pathogenic slow growing mycobacteria. Apparently there does not seem to be any direct relationship between either intra- or extra-cellular cyclic AMP content with the growth rate of the bacteria. Intracellular cyclic AMP content is much higher than that of E. coli grown on a similar carbon source. Glucose when added to the cells suspended in phosphate buffer lowers the intracellular cyclic AMP content by 6–8 fold.  相似文献   

5.
The stereoisomers of N6-phenylisopropyladenosine elicit accumulations of cyclic AMP in brain slices via interaction with adenosine-receptors. The response in guinea pig cerebral cortical slices and in rat hippocampal slices is blocked by theophylline and potentiated by biogenic amines. A chelator, EGTA, potentiates the response to phenylisopropyladenosine in guinea pig cerebral cortical slices. The 1-isomer (EC50 25 μM) is four- to five-fold more potent than the d-isomer in eliciting accumulations of cyclic AMP in brain slices. In a rat coronal hippocampal slice in vitro, 1-phenylisopropyladenosine (IC50 ~ 0.7 μM) reduces the amplitude of evoked synaptic responses generated via a monosynaptic pathway to the CA1 pyramidal neurons. The d-isomer is nearly one hundred-fold less potent. Thus, the adenosine-receptors involved in the electrophysical response appear much more stereoselective for the 1-isomer of phenylisopropyladenosine than the adenosine-receptors involved in cyclic AMP-generation in brain slices.  相似文献   

6.
7.
The phosphohydrolase activity of the membrane-associated (Ca2++Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte can be inhibited by micromolar or nanomolar concentrations of cyclic AMP. Millimolar concentrations of cyclic AMP are less effective. The inhibitory effect of cyclic AMP is potentiated in the presence of the phosphodiesterase inhibitor, theophylline.  相似文献   

8.
The endogenous level of cyclic AMP in incubated synaptosomes from cerebral cortex of guinea pigs was investigated after the addition of various agents to the incubation medium. It appeared that the synaptosomal suspension already contained exogenous adenosine. Preincubation with theophylline or with adenosine deaminase (ADase) decreased both the exogenous level of adenosine and the intrasynaptosomal level of cyclic AMP. The level of cyclic AMP was reincreased by the addition of adenosine agonists, especially 2-chloroadenosine. This increase was antagonized by deoxyadenosine and was not inhibited by dipyridamole. These results suggest that the adenosine derivatives in the synaptic cleft regulate the level of cyclic AMP in nerve terminals through adenosine receptor on the presynaptic membrane. ADP, ATP, dopamine, and histamine also stimulate the formation of cyclic AMP in the ADase-treated synaptosomes.  相似文献   

9.
Uptake of Adenosine by Isolated Rat Brain Capillaries   总被引:5,自引:4,他引:1  
Abstract: Adenosine uptake by isolated rat brain capillaries is a carrier-mediated, temperature- and pH-sensitive process. The K m value for adenosine uptake is 4.74 μ m and the V max is 21.7 picomol/mg protein/10 min. This is a high-affinity uptake system that can be cross-inhibited by several nucleosides and by the adenosine analogs tubercidin and 5'-deoxyadenosine. The uptake is very sensitive to inhibition by papaverine, hexobendine, and dipyridamole. These results confirm the existence of a nucleoside transport system associated with the blood-brain barrier observed during in vivo studies.  相似文献   

10.
α-Aminoisobutyrate accumulation by human fetal liver explants in organ culture is stimulated by dibutyryl cyclic AMP (N6, 2′O-dibutyryl adenosine 3′–5′: cyclic monophosphate), glucagon or insulin. Theophylline increased the effect of submaximal concentrations of dibutyryl cyclic AMP or glucagon. Maximal concentrations of glucagon and dibutyryl cyclic AMP yielded the same results as either agent alone. A period of about 4–6 h was required to observe the stimulatory effect of dibutyryl cyclic AMP or insulin, which could be completely prevented by simultaneous incubation with cycloheximide. Maximal effects of either dibutyryl cyclic AMP or glucagon plus insulin produced additive results. These data support the hypothesis that insulin acts via a mechanism independent of the glucagon—cyclic AMP pathway in liver tissue.In addition, the pharmacologic receptor for glucagon was detected in liver explants from a 30-mm (crown - rump) specimen (6 weeks gestation). The liver had the competence to respond to dibutyryl cyclic AMP by the 36-mm stage. Tissue from a 36-mm specimen did not respond to insulin, but a clear response was elicited from a specimen at the 48-mm stage. These data demonstrate the ability of human fetal liver to respond to hormones at a very early stage in gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号