首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.Plant viruses encode movement proteins (MPs) that mediate the intra- and intercellular spread of the viral genome via plasmodesmata, membranous channels that traverse the walls of plant cells and enable intercellular transport and communication. There is a range of diversity in the number and type of viral proteins required for viral movement (21). Research on tobacco mosaic virus (TMV) has played a leading role in understanding MP activity (2). The genome of TMV encodes a single 30-kDa multidomain protein, the namesake of the 30K superfamily (7). Viral RNA is associated with the membrane of the endoplasmic reticulum (ER) and microtubules in the presence of this MP (23, 30).A large number of plant viruses have 30K MPs, which share common abilities, including binding nucleic acids, localizing and increasing the size exclusion limit of plasmodesmata, and interacting with the ER membrane. A topological model has been proposed in which the TMV MP has two putative transmembrane (TM) helices, both the N and C termini oriented toward the cytoplasm, and a short loop exposed in the ER lumen (4). There is less experimental information for other 30K MPs, but they are likely to have some membrane interaction.Direct experimental evidence of the integration of MPs into the membrane has been obtained only for small hydrophobic MPs that do not belong to the 30K superfamily. There are two TM segments in the p9 protein of carnation mottle virus (41), whereas the p6 protein of beet yellow virus (29) and the p7B protein of melon necrotic spot virus (22) have a single TM segment. In viruses with genomes that include three partially overlapping open reading frames, termed the triple-gene block (TGB), all three TGB proteins are required for movement where the two smaller proteins, TGBp2 and TGBp3, are also TM proteins (24). Furthermore, cross-linking experiments with carnation mottle virus p9 protein demonstrated that its membrane insertion occurs cotranslationally in a signal recognition particle-dependent manner and throughout the cellular membrane integration components, the translocon (33, 34).Prunus necrotic ringspot virus (PNRSV) is a tripartite, positive-strand RNA virus in the genus Ilarvirus of the family Bromoviridae. RNAs 1 and 2 encode the polymerase proteins P1 and P2, respectively. RNA 3 is translated into a single 30K-type MP. The coat protein is translated from a subgenomic RNA 4 produced during virus replication.The present study tackled the association of the PNRSV MP with biological membranes. The in vitro translation of model integral membrane protein constructs in the presence of microsomal membranes demonstrated that the hydrophobic region (HR) of the PNRSV MP did not span the membranes. Different biochemical and biophysical experiments suggested that the protein is tightly associated with, but does not traverse, the membrane, leaving both its N- and C-terminal hydrophilic regions facing the cytosol. Finally, a mutational analysis of the HR revealed that both the helicity and hydrophobicity of the region are essential for viral cell-to-cell movement.  相似文献   

2.
3.
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum–derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5′ end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.  相似文献   

4.
Virus-encoded movement protein (MP) mediates cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata. The molecular pathway by which TMV MP interacts with the host cell is largely unknown. To understand this process better, a cell wall-associated protein that specifically binds the viral MP was purified from tobacco leaf cell walls and identified as pectin methylesterase (PME). In addition to TMV MP, PME is recognized by MPs of turnip vein clearing virus (TVCV) and cauliflower mosaic virus (CaMV). The use of amino acid deletion mutants of TMV MP showed that its domain was necessary and sufficient for association with PME. Deletion of the PME-binding region resulted in inactivation of TMV cell-to-cell movement.  相似文献   

5.
Plant viruses spread cell-to-cell by exploiting and modifying plasmodesmata, coaxial membranous channels that cross cell walls and interlink the cytoplasm, endoplasmic reticulum and plasma-membranes of contiguous cells. To facilitate viral spread, viruses encode for one or more movement proteins that interact with ER and ER derived membranes, bind vRNA and target to Pd. Mounting evidence suggests that RNA viruses that do not spread as virions employ the same basic mechanism to facilitate cell-to-cell spread. In light of the research reviewed here, we propose a general functional model for the cell-to-cell spread of these viruses. This model posits that MPs have multiple functions: one function involves directing virus induced β-1,3-glucanases which accumulate in ER derived vesicles to the cell wall to hydrolyze Pd associated callose in order to gate open the Pd; independently, the MPs form ER-associated protein rafts which transport bound vRNA by diffusion along ER to adjacent cells via the ER component of the plasmodesmata. The driving force for spread is the diffusion gradient between infected and non-infected adjacent cells.  相似文献   

6.
Propagation of viral infection in host plants comprises two distinct and sequential stages: viral transport from the initially infected cell into adjacent neighboring cells, a process termed local or cell-to-cell movement, and a chain of events collectively referred to as systemic movement that consists of entry into the vascular tissue, systemic distribution with the phloem stream, and unloading of the virus into noninfected tissues. To achieve intercellular transport, viruses exploit plasmodesmata, complex cytoplasmic bridges interconnecting plant cells. Viral transport through plasmodesmata is aided by virus-encoded proteins, the movement proteins (MPs), which function by two distinct mechanisms: MPs either bind viral nucleic acids and mediate passage of the resulting movement complexes (M-complexes) between cells, or MPs become a part of pathogenic tubules that penetrate through host cell walls and serve as conduits for transport of viral particles. In the first mechanism, M-complexes pass into neighboring cells without destroying or irreversibly altering plasmodesmata, whereas in the second mechanism plasmodesmata are replaced or significantly modified by the tubules. Here we summarize the current knowledge on both local and systemic movement of viruses that progress from cell to cell as M-complexes in a nondestructive fashion. For local movement, we focus mainly on movement functions of the 30 K superfamily viruses, which encode MPs with structural homology to the 30 kDa MP of Tobacco mosaic virus, one of the most extensively studied plant viruses, whereas systemic movement is primarily described for two well-characterized model systems, Tobacco mosaic virus and Tobacco etch potyvirus. Because local and systemic movement are intimately linked to the molecular infrastructure of the host cell, special emphasis is placed on host factors and cellular structures involved in viral transport.  相似文献   

7.
Plant virus transport: motions of functional equivalence   总被引:1,自引:0,他引:1  
Plant virus cell-to-cell movement and subsequent systemic transport are governed by a series of mechanisms involving various virus and plant factors. Specialized virus encoded movement proteins (MPs) control the cell-to-cell transport of viral nucleoprotein complexes through plasmodesmata. MPs of different viruses have diverse properties and each interacts with specific host factors that also have a range of functions. Most viruses are then transported via the phloem as either nucleoprotein complexes or virions, with contributions from host and virus proteins. Some virus proteins contribute to the establishment and maintenance of systemic infection by inhibiting RNA silencing-mediated degradation of viral RNA. In spite of all the different movement strategies and the viral and host components, there are possible functional commonalities in virus-host interactions that govern viral spread through plants.  相似文献   

8.
Cell-to-cell movement of a plant virus requires expression of the movement protein (MP). It has not been fully elucidated, however, how the MP functions in primary infected cells. With the use of a microprojectile bombardment-mediated DNA infection system for Tomato mosaic virus (ToMV), we found that the cotransfected ToMV MP gene exerts its effects in the initially infected cells and in their surrounding cells to achieve multicellular spread of movement-defective ToMV. Five other tobamoviral MPs examined also transcomplemented the movement-defective phenotype of ToMV, but the Cucumber mosaic virus 3a MP did not. Together with the cell-to-cell movement of the mutant virus, a fusion between the MP and an enhanced green fluorescent protein variant (EGFP) expressed in trans was distributed multicellularly and localized primarily in plasmodesmata between infected cells. In contrast, in noninfected sites the MP-EGFP fusion accumulated predominantly inside the bombarded cells as irregularly shaped aggregates, and only a minute amount of the fusion was found in plasmodesmata. Thus, the behavior of ToMV MP is greatly modulated in the presence of a replicating virus and it is highly likely that the MP spreads in the infection sites, coordinating with the cell-to-cell movement of the viral genome.  相似文献   

9.
Identification of a movement protein of rice yellow stunt rhabdovirus   总被引:3,自引:0,他引:3  
Rice yellow stunt rhabdovirus (RYSV) encodes seven genes in its negative-sense RNA genome in the order 3'-N-P-3-M-G-6-L-5'. The existence of gene 3 in the RYSV genome and an analogous gene(s) of other plant rhabdoviruses positioned between the P and M genes constitutes a unique feature for plant rhabdoviruses that is distinct from animal-infecting rhabdoviruses in which the P and M genes are directly linked. However, little is known about the function of these extra plant rhabdovirus genes. Here we provide evidence showing that the protein product encoded by gene 3 of RYSV, P3, possesses several properties related to a viral cell-to-cell movement protein (MP). Analyses of the primary and secondary protein structures suggested that RYSV P3 is a member of the "30K" superfamily of viral MPs. Biolistic bombardment transcomplementation experiments demonstrated that RYSV P3 can support the intercellular movement of a movement-deficient potexvirus mutant in Nicotiana benthamiana leaves. In addition, Northwestern blot analysis indicated that the RYSV P3 protein can bind single-stranded RNA in vitro, a common feature of viral MPs. Finally, glutathione S- transferase pull-down assays revealed a specific interaction between the RYSV P3 protein and the N protein which is a main component of the ribonucleocapsid, a subviral structure believed to be involved in the intercellular movement of plant rhabdoviruses. Together, these data suggest that RYSV P3 is likely a MP of RYSV, thus representing the first example of characterized MPs for plant rhabdoviruses.  相似文献   

10.
Chen MH  Tian GW  Gafni Y  Citovsky V 《Plant physiology》2005,138(4):1866-1876
Cell-to-cell tobacco mosaic virus movement protein (TMV MP) mediates viral spread between the host cells through plasmodesmata. Although several host factors have been shown to interact with TMV MP, none of them coresides with TMV MP within plasmodesmata. We used affinity purification to isolate a tobacco protein that binds TMV MP and identified it as calreticulin. The interaction between TMV MP and calreticulin was confirmed in vivo and in vitro, and both proteins were shown to share a similar pattern of subcellular localization to plasmodesmata. Elevation of the intracellular levels of calreticulin severely interfered with plasmodesmal targeting of TMV MP, which, instead, was redirected to the microtubular network. Furthermore, in TMV-infected plant tissues overexpressing calreticulin, the inability of TMV MP to reach plasmodesmata substantially impaired cell-to-cell movement of the virus. Collectively, these observations suggest a functional relationship between calreticulin, TMV MP, and viral cell-to-cell movement.  相似文献   

11.
The movement protein of tobacco mosaic virus, MP30, mediates viral cell-to-cell transport via plasmodesmata. The complex MP30 intra- and intercellular distribution pattern includes localization to the endoplasmic reticulum, cytoplasmic bodies, microtubules, and plasmodesmata and likely requires interaction with plant endogenous factors. We have identified and analyzed an MP30-interacting protein, MPB2C, from the host plant Nicotiana tabacum. MPB2C constitutes a previously uncharacterized microtubule-associated protein that binds to and colocalizes with MP30 at microtubules. In vivo studies indicate that MPB2C mediates accumulation of MP30 at microtubules and interferes with MP30 cell-to-cell movement. In contrast, intercellular transport of a functionally enhanced MP30 mutant, which does not accumulate and colocalize with MP30 at microtubules, is not impaired by MPB2C. Together, these data support the concept that MPB2C is not required for MP30 cell-to-cell movement but may act as a negative effector of MP30 cell-to-cell transport activity.  相似文献   

12.
Plant viral infection and spread depends on the successful introduction of a virus into a cell of a compatible host, followed by replication and cell-to-cell transport. The movement proteins (MPs) p8 and p9 of Turnip crinkle virus are required for cell-to-cell movement of the virus. We have examined the membrane association of p9 and found that it is an integral membrane protein with a defined topology in the endoplasmic reticulum (ER) membrane. Furthermore, we have used a site-specific photo-cross-linking strategy to study the membrane integration of the protein at the initial stages of its biosynthetic process. This process is cotranslational and proceeds through the signal recognition particle and the translocon complex.Cell-to-cell transport of plant virus requires the virally encoded movement proteins (MPs). These proteins specialize in the translocation of the viral genome or, in some cases, the virions from the replication/encapsidation site to adjacent cells. This process takes place through the plasmodesmata (PD), the small pores formed by prolongations of the endoplasmic reticulum (ER) membranes trapped within the center of the plasma membrane-lined cytoplasmic cylinder that connect plant cells. MPs belong to different protein families with unique functional and structural characteristics. The most studied MP is p30 from the Tobacco mosaic virus, a 30-kDa RNA-binding protein (4) with two putative transmembrane (TM) segments (2) that has so far been considered an integral membrane protein (13, 42). At an early stage of infection, p30 associates with the ER network (18, 59). Given that the ER is continuous through PD, it was suggested that the movement complex transports cell to cell via the PD. On the other hand, passage through the connecting structure largely remains a mystery, although it seems reasonable that the process again occurs in close juxtaposition to the ER-derived membrane (desmotubule) that runs through the PD (12, 35). Many other plant viruses have a cell-to-cell transport system based not on one but on two (double-gene block [DGB]) or even three (triple-gene block [TGB]) MPs. In some of these cases it has been shown that at least one MP is closely associated with the ER membrane (28, 34, 41, 50, 55). Thus, it has been assumed that other MPs associate similarly with membranes.The targeting and insertion of an integral membrane protein can occur either posttranslationally, in which the protein is completely synthesized on cytosolic ribosomes before being inserted, or cotranslationally, in which protein synthesis and integration into the ER membrane are coupled. In the latter case, the targeting of the ribosome-mRNA-nascent chain complex to the membrane depends on the signal recognition particle (SRP) and its interaction with the membrane-bound SRP receptor (11), which is located in close proximity to the translocon. The translocon, a multiprotein complex composed of the Sec61α, -β, and -γ subunits (16) and the translocating chain-associated membrane protein (TRAM) (15) in eukaryotic cells, facilitates the translocation of soluble proteins into the ER lumen and the insertion of integral membrane proteins into the lipid bilayer (24).Plant virus infection depends on the proper targeting and association or insertion of the movement proteins with or into the ER membrane. In this report, we investigate the insertion into, topology of, and targeting to the membrane of the p9 MP from Turnip crinkle virus (TCV). This is a positive-sense single-stranded RNA virus that belongs to the Carmovirus genus and thus to the DGB. Its 4-kb genome encodes five open reading frames (ORFs) (3, 17). Translation of the first two yields p28 and p88, both implicated in viral RNA synthesis. In the central region, two overlapping ORFs encode the small proteins p8 and p9, which have been shown to be involved in cell-to-cell movement (6, 17, 31). The RNA-binding protein p8 (17, 58) overlaps the distal 3′ region of the replicase p88. The 3′ region of the genome encodes the viral coat protein p38, and its 5′ end overlaps p9 (3).A strong interaction with the membrane is expected for p9 due to the close similarities in the genomic arrangement of TCV (57) with other carmoviruses, like Carnation mottle virus (CarMV) and Melon necrotic spot virus (MNSV). Both CarMV and MNSV have two small MPs, one an RNA-binding protein (39, 53, 54) and the other a cotranslationally inserted integral membrane protein (34, 47, 55). In this study, we present evidence of the integration of TCV p9 into ER-derived microsomal membranes. Using an in vitro translation system based on a model integral membrane protein, we have been able to identify two membrane-spanning domains. Additionally, the membrane topology of the p9 MP was analyzed in vitro and found to have an N terminus (N-t)/C terminus (C-t) luminal orientation. Finally, using a site-directed photo-cross-linking approach, we demonstrated that the mechanism of p9 insertion into the ER membrane involves SRP and the translocon.  相似文献   

13.
Plant viral movement proteins (MPs) participate actively in the intra- and intercellular movement of RNA plant viruses to such an extent that MP dysfunction impairs viral infection. However, the molecular mechanism(s) of their interaction with cognate nucleic acids are not well understood, partly due to the lack of structural information. In this work, a protein dissection approach was used to gain information on the structural and RNA-binding properties of this class of proteins, as exemplified by the 61-amino acid residue p7 MP from carnation mottle virus (CarMV). Circular dichroism spectroscopy showed that CarMV p7 is an alpha/beta RNA-binding soluble protein. Using synthetic peptides derived from the p7 sequence, we have identified three distinct putative domains within the protein. EMSA showed that the central region, from residue 17 to 35 (represented by peptide p7(17-35)), is responsible for the RNA binding properties of CarMV p7. This binding peptide populates a nascent alpha-helix in water solution that is further stabilized in the presence of either secondary structure inducers, such as trifluoroethanol and monomeric SDS, or RNA (which also changes its conformation upon binding to the peptide). Thus, the RNA recognition appears to occur via an "adaptive binding" mechanism. Interestingly, the amino acid sequence and structural properties of the RNA-binding domain of p7 seem to be conserved among carmoviruses and some other RNA-binding proteins and peptides. The low conserved N terminus of p7 (peptide p7(1-16)) is unstructured in solution. In contrast, the highly conserved C terminus motif (peptide p7(40-61)) adopts a beta-sheet conformation in aqueous solution. Alanine scanning mutagenesis of the RNA-binding motif showed how selected positive charged amino acids are more relevant than others in the RNA binding process and how hydrophobic amino acid side chains would participate in the stabilization of the protein-RNA complex.  相似文献   

14.
Virus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus ((TMV)MP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that (TMV)MP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd. An alternate model proposes that cell-to-cell spread takes place by diffusion of the MP:vRNA complex in the ER membranes which traverse Pd. To test these models, we measured the effect of (TMV)MP and replicase expression on cell-to-cell spread of several green fluorescent protein-fused probes: a soluble cytoplasmic protein, two ER lumen proteins, and two ER membrane-bound proteins. Our data support the diffusion model in which a complex that includes ER-embedded MP, vRNA, and other components diffuses in the ER membrane within the Pd driven by the concentration gradient between an infected cell and adjacent noninfected cells. The data also suggest that the virus replicase and MP function together in altering Pd conductivity.  相似文献   

15.
Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.  相似文献   

16.
Plasmodesmata (Pd), coaxial membranous channels that connect adjacent plant cells, are not static, but show a dynamic nature and can be opened or closed. These controlled changes in Pd conductivity regulate plant symplasmic permeability and play a role both in development and defense processes. One of the mechanisms shown to produce these changes is the deposition and hydrolysis of callose by β-1-3-synthase and glucanase, respectively. Recently we have identified the first β-1,3-glucanase Arabidopsis enzyme that is associated to the macromolecular Pd complex, termed AtBG_pap. When fused to GFP, this previously identified GPI-anchored protein localizes to the ER and the plasma membrane where it appears in a punctuate pattern that colocalizes with callose present around Pd. In T-DNA insertion mutants that do not transcribe AtBG_pap, GFP cell-to-cell movement between epidermal cells is reduced and callose levels around Pd are elevated. In this addenda we review the plant developmental processes of symplasmic regulation that have been shown to include callose deposition and β-1,3-glucanase activity, and suggest a role for AtBG_pap in these processes. Additionally, based on the ability of viral movement proteins (MPs) to interact with ankyrin repeat proteins, and together with our recent findings showing the involvement of viral particles in callose degradation, we also purpose a new model for the ability of viruses to overcome Pd-callose deposition, and mediate their cell-to-cell movement.Key Words: plasmodesmata, cell-cell communication, callose, β-1,3-glucanase, movement protein, ankyrin repeats  相似文献   

17.
Plasmodesmata (PD) are the communication channels which allow the trafficking of macromolecules between neighboring cells. Such cell-to-cell movement of macromolecules is regulated during plant growth and development; however, little is known about the regulation mechanism of PD size exclusion limit (SEL). Plant viral movement proteins (MPs) enhance the invasion of viruses from cell to cell by increasing the SEL of the PD and are therefore a powerful means for the study of the plasmodesmal regulation mechanisms. In a recent study, we reported that the actin cytoskeleton is involved in the increase of the PD SEL induced by MPs. Microinjection experiments demonstrated that actin depolymerization was required for the Cucumber mosaic virus (CMV) MP-induced increase in the PD SEL. In vitro experiments showed that CMV MP severs actin filaments (F-actin). Furthermore, through the analyses of two CMV MP mutants, we demonstrated that the F-actin severing ability of CMV MP was required to increase the PD SEL. These results are similar to what has been found in Tobacco mosaic virus MP. Thus, our data suggest that actin dynamics may participate in the regulations of the PD SEL.Key words: plasmodesmata, size exclusion limit, movement protein, actin filaments, F-actin severing  相似文献   

18.
Plant virus-encoded movement proteins promote viral spread between plant cells via plasmodesmata. The movement is assumed to require a plasmodesmata targeting signal to interact with still unidentified host factors presumably located on plasmodesmata and cell walls. The present work indicates that a ubiquitous cell wall-associated plant enzyme pectin methylesterase of Nicotiana tabacum L. specifically binds to the movement protein encoded by tobacco mosaic virus. We also show that pectin methylesterase is an RNA binding protein. These data suggest that pectin methylesterase is a host cell receptor involved in cell-to-cell movement of tobacco mosaic virus.  相似文献   

19.
The current model for cell-to-cell movement of plant viruses holds that transport requires virus-encoded movement proteins that intimately associate with endoplasmic reticulum membranes. We have examined the early stages of the integration into endoplasmic reticulum membranes of a double-spanning viral movement protein using photocross-linking. We have discovered that this process is cotranslational and proceeds in a signal recognition particle-dependent manner. In addition, nascent chain photocross-linking to Sec61alpha and translocating chain-associated membrane protein reveal that viral membrane protein insertion takes place via the translocon, as with most eukaryotic membrane proteins, but that the two transmembrane segments of the viral protein leave the translocon and enter the lipid bilayer together.  相似文献   

20.
It is generally accepted that in order to establish a systemic infection in a plant, viruses move from the initially infected cell to the vascular tissues by cell-to-cell movement through plasmodesmata (PD), and load into the vascular conducting tubes (i.e. phloem sieve elements and xylem vessel elements) for long-distance movement. The viral unit in these movements can be a virion or a yet-to-be-defined ribonucleic protein (RNP) complex. Using live-cell imaging, our laboratory has previously demonstrated that membrane-bound replication complexes move cell-to-cell during turnip mosaic virus (TuMV) infection. Our recent study shows that these membrane-bound replication complexes end up in the vascular conducting tubes, which is likely the case for potato virus X (PVX) also. The presence of TuMV-induced membrane complexes in xylem vessels suggests that viral components could also be found in other apoplastic regions of the plant, such as the intercellular space. This possibility may have implications regarding how we approach the study of plant innate immune responses against viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号