首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
酵母发酵蔗渣半纤维素水解物生产木糖醇   总被引:6,自引:0,他引:6       下载免费PDF全文
采用二次正交旋转组合设计研究了蔗渣半纤维素水解过程中硫酸浓度与液/固比对木糖收率的影响。回归分析表明,这两个因素与木糖的收率之间存在显著的回归关系。通过回归方程优化水解条件,当硫酸浓度2.4g/L,液/固=6.2,在蒸汽压力2.5×104 Pa的条件下水解2.5h,100g蔗渣可水解生成木糖约24g 。大孔树脂吸附层析处理蔗渣半纤维素水解物,能有效地减少其中的酵母生长抑制物含量,显著改善水解物的发酵性能。用大孔树脂在pH 2条件下处理过的蔗渣半纤维素水解物作基质,含木糖200g/L,产木糖醇酵母菌株Candida tropicalis AS2.1776发酵110h耗完基质中的木糖,生成木糖醇127g/L,产物转化率0.64(木糖醇g/木糖g),产物生成速率1.15g/L·h.    相似文献   

2.
采用有机酸法水解制备蔗渣低聚木糖,通过单因素实验、正交试验研究了甲酸-乙酸比例、温度、水解时间、固液比等因素的影响,以水解率、总糖收率和聚糖收率为考察指标,得到有机酸法水解蔗渣制备低聚木糖的最优预处理条件为甲酸∶乙酸=9∶1、水解温度100℃、水解时间60min、固液比1∶7,在此条件下蔗渣水解率为47.78%,总糖收率20.57%,聚糖收率11.88%。HPLC检测结果显示:水解物中木二糖含量为17.69%,木三糖为11.23%,更高聚合度聚糖所占比例为29.42%,木糖为36.78%。半纤维素有机酸水解物可进一步通过木聚糖酶水解、分离制备低聚木糖。研究结果可为蔗渣制备低聚木糖新工艺提供科学依据。  相似文献   

3.
目的:蔗渣是一种重要的可再生生物质资源,蔗渣原料生产丁醇将大大降低丁醇的成本.方法:实验利用0.25 ~3.0%不同浓度稀H2SO4对蔗渣进行121℃的高温作用1h,以水解液为碳源,进行丁醇的发酵实验.结果:相对于8052菌株,13 -2菌株对甘蔗渣水解液具有更高的发酵效率,在0.5%硫酸用量条件下,13 -2菌株的丁醇发酵量最高,达到4.5g/L.而8052只有2.3g/L的丁醇发酵量.结论:在同等条件下,拜氏梭菌菌株13 -2比模式菌株8052具有更高的溶剂产量和抑制物耐受能力,最佳的蔗渣水解条件为1.5%硫酸用量,丁醇发酵量和总溶剂分别为4.57g/L和5.41 g/L.  相似文献   

4.
假丝酵母发酵玉米芯半纤维素水解液生产木糖醇   总被引:11,自引:0,他引:11  
采用一株驯化过的假丝酵母(Candida sp.)直接发酵经过简单脱毒处理的玉米芯半纤维素水解液生产木糖醇。确定了水解液的最适浓缩倍数在3.0~3.72的范围内。利用正交实验,确定了摇瓶分批发酵工艺条件的最适组合为:摇床转速180r/min,起始C/N为50,起始pH 5.5,接种量5% (体积比)。在此基础上,重点研究了在发酵罐中通气量对酵母发酵玉米芯水解液生产木糖醇的影响。结果表明采用先高后低的分段通气发酵在木糖醇得率方面明显优于恒定通气发酵;其中,在0~24h,3.75 L/min;24~108h,1.25 L/min的分段通气条件下(装液量为2.5L),木糖醇得率(木糖醇/木糖,g/g) 达到0.75 g/g。该结果将有助于建立一种高效的、大规模的利用玉米芯半纤维素水解液发酵生产木糖醇的工艺。  相似文献   

5.
半纤维素水解物生物转化生产木糖醇   总被引:18,自引:0,他引:18  
木糖醇在食品、医药及化工行业中有着广泛的用途而深受关注。但是,传统的化学法生产木糖醇需要一系列复杂的分离纯化步骤,过高的生产成本限制了木糖醇的使用范围。发酵工艺生产木糖醇无需木糖的纯化步骤,是取代化学合成法的一条可行工艺路线。本文着重介绍产木糖醇的微生物,酵母对木糖的同化途径,半纤维素水解物的脱毒方法,影响木糖醇发酵的工艺条件等。  相似文献   

6.
实验对树干毕赤酵母(Pichia stipitis)进行了4个阶段共400 h连续恒化培养,在不同阶段以30.0 g/L葡萄糖作为基本碳源,添加30.0或15.0 g/L的木糖,通过控制温度(35±1)℃,进气量100~150mL/min,搅拌转速250~300 r/min。4个阶段共建立4个连续培养的"稳态"。对碳元素进行物料衡算发现,四个阶段碳元素回收率分别为118.0 %、105.6 %、113.5 %和94.7 %。对4个近似"稳态"的碳元素的代谢流向进行分析发现:将近50.0 %左右碳元素流向产物酒精,其次是CO2和酵母细胞;木糖醇浓度与流入底物中木糖浓度有直接关系,在相同发酵条件下流入的木糖浓度越大代谢生成木糖醇浓度也越高;实验所采用的通气条件更适合底物为30.0 g/L葡萄糖和30.0 g/L木糖混合液的连续发酵。  相似文献   

7.
一株高效利用木糖的酵母菌的分离及鉴定   总被引:3,自引:0,他引:3  
从256个自然试样中筛选到1株高效转化D-木糖为木糖醇的酵母菌株441-28—1。初始木糖质量浓度为90g/L的条件下,24h内的木糖利用效率为3.0g/(L·h)。通过高效液相分析,菌株441-28—1的主要代谢产物为木糖醇。在初始木糖质量浓度为65g/L的条件下,摇瓶分批发酵,木糖醇生成速率达1.1g/(L·h),木糖醇转化率为70%。经过形态、生理生化特征测定,以及ITS序列分析(GenBank的登记号为EU121523),将441-28—1菌株鉴定为热带假丝酵母(Candida tropicalis)。Candida tropicalis(热带假丝酵母)已保存于中国高校工业微生物资源数据平台,保藏编号CICIM Y0092。  相似文献   

8.
木糖醇是一种在食品、医药、轻工等领域具有广泛用途的多元醇,目前主要通过酸水解木聚糖获得木糖并进一步化学催化加氢方法制备。提取木糖过程中会产生大量的木糖母液副产物,其中含有一定浓度的葡萄糖、木糖、阿拉伯糖等碳源,以及少量的糠醛、四氢呋喃等物质。研究微生物转化木糖母液生产高附加值化学品不仅能够提高木糖母液的利用价值,而且能够减少环境污染。热带假丝酵母不仅能够利用葡萄糖,也具有高效的木糖代谢途径。首先利用代谢工程技术删除了热带假丝酵母菌株的木糖醇脱氢酶基因,获得能够转化木糖积累木糖醇的突变株。在此基础上,评价了突变株在木糖母液培养基中的发酵性能。通过单因素优化实验确定了突变株发酵生产木糖醇较优的发酵工艺:培养基组成为木糖母液300g/L,玉米浆5g/L;最佳发酵条件为:发酵温度35℃,初始p H为5.0,接种量15%,200r/min摇床培养140h。利用优化后的发酵工艺,木糖醇产量达到83.01g/L。初步建立了转化木糖母液生产木糖醇的工艺,为进一步利用木糖母液奠定了基础。  相似文献   

9.
粗糙脉孢菌(Neurospora crassa)木糖发酵的研究   总被引:8,自引:0,他引:8  
研究了不同通氧条件和培养基初始pH等对粗糙脉孢菌(Neurospora crassa)AS3.1602木糖发酵的影响。结果表明,粗糙脉孢菌具有较强的发酵木糖产生乙醇及木糖醇的能力。通气量对木糖发酵有较大的影响。乙醇发酵适合在半好氧条件下进行,此时乙醇的转化率达到63.2%。木糖醇发酵适合在微好氧的条件下进行,转化率达到31.8%。木糖醇是在培养基中乙醇达到一定浓度后才开始积累。培养基的初始pH对木糖发酵产物有较大的影响,乙醇产生最适pH5.0,木糖醇产生最适pH4.0。在培养基pH为碱性条件时,木糖发酵受到很大的抑制。初始木糖浓度对产物乙醇及木糖醇的产率有很大的影响。葡萄糖的存在会抑制木糖的利用,对乙醇和木糖醇的产生也有很大的影响。  相似文献   

10.
为实现利用秸秆水解产生的五碳糖发酵产壳聚糖,以米根霉为研究对象,研究水解温度、水解时间、酸浓度等不同预处理方式获得的半纤维素水解液对米根霉发酵产壳聚糖的影响。结果表明:水解温度、水解时间对水解液中木糖含量以及甲酸、乙酸、糠醛等抑制剂浓度具有显著影响,并进一步影响后续发酵产壳聚糖的生成量。利用响应曲面对稀酸水解预处理条件进行优化,获得最佳工艺条件:H_2SO_413.6 g/L,99.5℃,水解时间1.91 h,在此条件下预测壳聚糖发酵产量为0.79 g/L,实验验证产量为0.82 g/L,占菌体生物量的15%~18%。研究结果为秸秆资源的高效利用及发酵生产壳聚糖提供新思路。  相似文献   

11.
A 2(2) full factorial design was employed to evaluate the effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate obtained in a 250-L reactor. The acid loading and the residence time were varied from 70 to 130 mg acid per gram of dry bagasse and from 10 to 30 min, respectively, while the temperature (121 degrees C) and the bagasse loading (10%) were kept constant. Both the sulfuric acid loading and the residence time influenced the concentrations of xylose and inhibitors in the hydrolysate. The highest xylose concentration (22.71 g/L) was achieved when using an acid loading of 130 mg/g and a residence time of 30 min. These conditions also led to increased concentrations of inhibiting byproducts in the hydrolysate. All of the hydrolysates were vacuum-concentrated to increase the xylose concentration, detoxified by pH alteration and adsorption into activated charcoal, and used for xylitol bioproduction in a stirred tank reactor. Neither the least (70 mg/g, 10 min) nor the most severe (130 mg/g, 30 min) hydrolysis conditions led to the best xylitol production (37.5 g/L), productivity (0.85 g/L h), and yield (0.78 g/g).  相似文献   

12.
A thermotolerant yeast capable of fermenting xylose to xylitol at 40°C was isolated and identified as a strain of Debaryomyces hansenii by ITS sequencing. This paper reports the production of xylitol from D-xylose and sugarcane bagasse hemicellulose by free and Ca-alginate immobilized cells of D. hansenii. The efficiency of free and immobilized cells were compared for xylitol production from D-xylose and hemicellulose in batch culture at 40°C. The maximum xylitol produced by free cells was 68.6 g/L from 100 g/L of xylose, with a yield of 0.76 g/g and volumetric productivity 0.44 g/L/h. The yield of xylitol and volumetric productivity were 0.69 g/g and 0.28 g/L/h respectively from hemicellulosic hydrolysate of sugarcane bagasse after detoxification with activated charcoal and ion exchange resins. The Ca-alginate immobilized D. hansenii cells produced 73.8 g of xylitol from 100 g/L of xylose with a yield of 0.82 g/g and volumetric productivity of 0.46 g/L/h and were reused for five batches with steady bioconversion rates and yields.  相似文献   

13.
A natural isolate, Candida tropicalis was tested for xylitol production from corn fiber and sugarcane bagasse hydrolysates. Fermentation of corn fiber and sugarcane bagasse hydrolysate showed xylose uptake and xylitol production, though these were very low, even after hydrolysate neutralization and treatments with activated charcoal and ion exchange resins. Initial xylitol production was found to be 0.43 g/g and 0.45 g/g of xylose utilised with corn fiber and sugarcane bagasse hydrolysate respectively. One of the critical factors for low xylitol production was the presence of inhibitors in these hydrolysates. To simulate influence of hemicellulosic sugar composition on xylitol yield, three different combinations of mixed sugar control experiments, without the presence of any inhibitors, have been performed and the strain produced 0.63 g/g, 0.68 g/g and 0.72 g/g of xylose respectively. To improve yeast growth and xylitol production with these hydrolysates, which contain inhibitors, the cells were adapted by sub culturing in the hydrolysate containing medium for 25 cycles. After adaptation the organism produced more xylitol 0.58 g/g and 0.65 g/g of xylose with corn fiber hydrolysate and sugarcane bagasse hydrolysate respectively.  相似文献   

14.
Pretreatment steps are necessary for the bioconversion of corn stover (CS) to xylitol. In order to optimize the pretreatment parameters, the sulfuric acid concentration, sulfuric acid residence time, and solid slurry concentration were evaluated, based on the glucose and xylose recovered from CS at the relatively low temperature of 120°C. The optimum conditions were found to be pretreatment with 2.5% (w/v) sulfuric acid for 1.5 h, with a solid slurry concentration of 90 g/L. Under these conditions, the hydrolysis rates of glucan and xylan were approximately 26.0 and 82.8%, respectively. High xylitol production (10.9 g/L) and conversion yield (0.97 g/g) were attained from corn stover hydrolysate (CSH) without detoxification and any nutrient addition. Our results were similar for xylitol production in synthetic medium under the same conditions. The non-necessity of both the hydrolysate detoxification step and nutrient addition to the CSH is undoubtedly promising for scale-up application on an industrial scale, because this medium-based manufacturing process is expected to reduce the production cost of xylitol. The present study demonstrates that value-added xylitol could be effectively produced from CS under optimized pretreatment conditions, especially with CSH as the substrate material.  相似文献   

15.
Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.  相似文献   

16.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

17.
Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively.  相似文献   

18.
The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.  相似文献   

19.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
The xylose conversion into by Candida guilliermondii was evaluated in sugar cane bagasse hemicellulosic hydrolysate. The effect of air flow rates of 0.4, 0.6 and 0.8 vvm cn xylitol formation was studied. In addition, inoculum previously adapted to the hydrolysate was also tested in the fermentation carried out at 0.6 vvm. The results showed that xylitol production depends markedly on the aeration rate and on the previous adaptation of the yeast to the hydrolysate. When the highest productivity of xylitol was 0.39 g/l × h. However, during the fermentation carried out at an air flow rate of 0.6 vvm with adapted inoculum, the productivity increased to 0.65 g/l × h. Furthermore, the adapted cells performed quite well in the presencel of acetic concentrations of about 4.5 g/l in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号