首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用免疫组织化学方法研究丝裂原激活蛋白激酶(mitogen-activated protein kinases,MAPK)及其底物之一p90^rsk在大鼠卵泡发育过程中的表达与活性。结果表明,非活性形式的MAPK存在于大鼠各生长期卵泡的卵母细胞和颗粒细胞中,但磷酸化活性形式的MAPK只存在于部分具有分裂增殖活性的颗粒细胞中。MAPK的作用底物p90^rsk只在各期卵泡的卵母细胞中表达,在颗粒细胞中无着色,说明MAPK信号级联在卵母细胞和颗粒细胞中具有不同的作用方式。另外,胎鼠卵巢的免疫组化染色结果显示,MAPK在卵原细胞增殖过程中具有活性,表明MAPK信号级联在这一过程中起作用。  相似文献   

2.
核糖体S6蛋白激酶p90rsk与卵母细胞减数分裂   总被引:1,自引:0,他引:1  
丝裂原活化蛋白激酶(MAPK)信号途径对减数分裂有重要调节作用,p90rsk是迄今研究最清楚的MAPK下游靶分子,介导MAPK途径在卵母细胞减数分裂中的多种功能,包括卵母细胞减数分裂的启动、MⅠ/MⅡ期转化和MⅡ期阻滞的维持等.p90rsk的磷酸化是MAPK激活的结果,而细胞退出减数分裂时,p90rsk的去磷酸化也发生在MAPK失活以后.介绍了在卵母细胞中p90rsk的研究进展.  相似文献   

3.
动物体内卵泡排卵前促黄体素(luteinizing hormone, LH)诱导了卵丘颗粒细胞扩散,并启动卵母细胞恢复减数分裂。普遍认为,卵泡壁层颗粒细胞表达LH受体,卵母细胞及其周围卵丘细胞不表达LH受体,LH通过作用于卵泡壁层颗粒细胞产生信号分子,这些信号分子作用于卵丘颗粒细胞介导了LH生物作用。然而,一直以来,关于排卵前介导LH作用而诱导卵母细胞成熟的机制一直存在争议。目前研究认为,LH作用于卵泡壁层颗粒细胞后产生了EGF类因子,并与颗粒细胞的受体结合,促进了卵母细胞的成熟和发育。由于体外成熟的卵丘卵母细胞复合体来源于生长卵泡,其卵丘颗粒细胞EGF类因子信号系统不完善,目前的体外成熟培养体系难以模拟卵泡内的生理环境,导致卵母细胞体外发育能力较差,限制了这些卵母细胞的利用效率。本文综述了颗粒细胞EGF类因子信号系统、EGF类因子在调控卵母细胞成熟中的作用及对卵母细胞发育能力的影响,为优化卵母细胞体外成熟培养体系,完善卵丘颗粒细胞的EGF类因子的信号系统,进而提高卵母细胞体外成熟效率提供理论依据。  相似文献   

4.
为研究p38MAPKmRNA在斑马鱼卵母细胞发育中的表达变化,采用实时荧光定量PCR技术,检测p38MAPK的两个亚型p38α和p38β在不同发育阶段卵母细胞及卵母细胞体内成熟过程中的表达。研究显示,p38α和p38βmRNA在初级生长期(PG期)卵母细胞中表达量最低,p38αmRNA在卵黄发生早期(EV期)表达量最高,p38βmRNA在充分生长未成熟期(FG期)卵母细胞中表达量显著高于其他各期(p0.05)。在排卵前卵细胞体内成熟过程中,p38α和p38βmRNA在FG期未成熟卵母细胞中高水平表达,随后p38α和p38β均先下降,但在卵母细胞成熟后显著增加(p0.05)。上述结果提示,斑马鱼卵母细胞发育与p38MAPK的表达变化有关,p38MAPK信号通路在鱼类卵母细胞发育中发挥重要的作用。  相似文献   

5.
G蛋白偶联受体3(Gpr3)属于G蛋白偶联受体视紫质家族成员.Gpr3通过激活Gs蛋白介导的下游信号通路,维持卵泡卵母细胞减数分裂的前期阻滞,但在卵泡颗粒细胞中的作用不清.为了明确Gpr3在猪卵泡颗粒细胞中的功能,构建了Gpr3基因的真核表达载体,利用过表达的方式激活其介导的信号通路,并利用MTT、流式细胞术和real-time PCR等方法检测了过表达Gpr3对猪卵泡颗粒细胞增殖及凋亡的影响.结果显示,过表达Gpr3后,猪颗粒细胞的增殖水平显著下调,G0/G1期细胞的百分比增加,S期细胞减少,Cyclin B1和CDK1 mRNA的表达量也显著降低;同时,显著增加了颗粒细胞的凋亡率,在抑制Bcl-2表达的同时,促进了Bax的表达.结果表明:过表达Gpr3在猪颗粒细胞中具有抑增殖促凋亡的作用,丰富了其在调节卵泡发育过程中的生物学功能.  相似文献   

6.
蛋白激酶在卵母细胞减数分裂和受精中的作用   总被引:5,自引:0,他引:5  
脊椎动物卵母细胞的减数分裂和受精过程受到多种蛋白激酶的调节。近年来对于卵母细胞成熟、活化和受精的分子机制研究取得了长足进步 ,发现促成熟因子 (MPF)和促分裂原活化蛋白激酶 (MAPK)是调节卵母细胞细胞周期的关键分子 ,二者的激活和失活导致了减数分裂的恢复、阻滞和完成。许多蛋白激酶通过调节MPF和MAPK活性来影响减数分裂。Polo like激酶活化MPF ,Mos激活MAPK而启动成熟分裂并维持中期阻滞。CaMKII通过泛素途径灭活MPF使卵突破MII期阻滞。另外 ,p90 rsk作为MAPK的下游分子参与减数分裂调节 ,蛋白激酶C(PKC)诱导皮质颗粒排放并抑制MAPK激活 ,酪氨酸蛋白激酶家族成员介导受精诱发的Ca2 释放。这些蛋白激酶的协同作用推动了卵母细胞正常的成熟与受精  相似文献   

7.
核糖体S6蛋白激酶p90rsk与卵母细胞减数分裂   总被引:2,自引:2,他引:0  
丝裂原活化蛋白激酶(MAPK)信号途径对减数分裂有重要调节作用,p90rsk是迄今研究最清楚的MAPK下游靶分子,介导MAPK途径在卵母细胞减数分裂中的多种功能,包括卵母细胞减数分裂的启动、MⅠ/MⅡ期转化和MⅡ期阻滞的维持等.p90rsk的磷酸化是MAPK激活的结果,而细胞退出减数分裂时,p90rsk的去磷酸化也发生在MAPK失活以后.介绍了在卵母细胞中p90rsk的研究进展.  相似文献   

8.
罗文祥  祝诚 《中国科学C辑》2000,30(3):294-299
研究了IGF-Ⅰ、IGF结合蛋白-2(IGFBP-2)和促黄体激素受体(LHR)mRNA在卵泡闭锁过程中的表达及调节.给26日龄大鼠注射15 IU PMSG,经检测,证实PMSG处理48 h后,一些小窦状卵泡的颗粒细胞已发生凋亡;96 h在排卵前卵泡中已可检测到凋亡细胞;120 h大多数的排卵前卵泡中均出现大量的凋亡细胞.48~120 h IGF-Ⅰ主要在窦前卵泡和小窦状卵泡表达;48与96 h,窦前与窦状卵泡的膜细胞均表达高水平的IGFBP-2.在48 h,颗粒细胞中有LHR的强信号,但在96和120 h,颗粒细胞的LHR表达减弱(P<0.001).表皮生长因子(EGF)和IGF-Ⅰ均抑制窦前和窦状卵泡颗粒细胞凋亡.同时观察到EGF促进IGF-Ⅰ mRNA表达,IGF-Ⅰ刺激排卵前卵泡表达LHR mRNA.上述结果表明,各级卵泡的闭锁可能均受EGF和IGF-Ⅰ相互作用的调节.  相似文献   

9.
马瑞风  王丽岩  贺立新  汪宇 《生物磁学》2011,(18):3434-3437
目的:探讨膜联蛋白I(AnnexinI)在多囊卵巢综合征(PCOS)大鼠卵泡颗粒细胞的表达及生物学意义。方法:采用免疫组织化学方法及灰度值测定AnnexinI在PCOS组和对照组的卵泡颗粒细胞中的表达。结果:AnnexinI在两组中的各级卵泡颗粒细胞中均有表达,PCOS组AnnexinI在窦状卵泡中表达显著高于对照组(P〈0.05)。结论:PCOS组AnnexinI在窦状卵泡颗粒细胞的表达上调,且PCOS中窦状卵泡颗粒细胞的凋亡增加,说明AnnexinI参与了卵巢颗粒细胞的凋亡过程,并且发挥了重要作用。  相似文献   

10.
目的:探讨膜联蛋白Ⅰ(AnnexinⅠ)在多囊卵巢综合征(PCOS)大鼠卵泡颗粒细胞的表达及生物学意义。方法:采用免疫组织化学方法及灰度值测定AnnexinⅠ在PCOS组和对照组的卵泡颗粒细胞中的表达。结果:AnnexinⅠ在两组中的各级卵泡颗粒细胞中均有表达,PCOS组AnnexinⅠ在窦状卵泡中表达显著高于对照组(P<0.05)。结论:PCOS组AnnexinⅠ在窦状卵泡颗粒细胞的表达上调,且PCOS中窦状卵泡颗粒细胞的凋亡增加,说明AnnexinⅠ参与了卵巢颗粒细胞的凋亡过程,并且发挥了重要作用。  相似文献   

11.
Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.  相似文献   

12.
Tong C  Fan HY  Chen DY  Song XF  Schatten H  Sun QY 《Cell research》2003,13(5):375-383
In this study we used U0126, a potent and specific inhibitor of MEK, to study the roles of MEK/ERK/p90rsk signaling pathway in the meiotic cell cycle of mouse oocytes. The phosphorylation of MAP kinase and p90rsk in the oocytes treated with 1.5 microM U0126 was the same as that in oocytes cultured in drug-free medium. With 1.5 microM U0126 treatment, the spindles appeared normal as they formed in oocytes, but failed to maintain its structure. Instead, the spindle lost one pole or elongated extraordinarily. After further culture, some oocytes extruded gigantic polar bodies (>30 microm) that later divided into two small ones. Some oocytes underwent symmetric division and produced two equal-size daughter cells in which normal spindles formed. In oocytes with different division patterns, MAP kinase was normally phosphorylated. When the concentration of U0126 was increased to 15 mM, the phosphorylation of both MAPK and p90rsk were inhibited, while symmetric division was decreased. When incubating in medium containing 15 microM U0126 for 14 h, oocytes were activated, but part of them failed to emit polar bodies. MII oocytes were also activated by 15 microM U0126, at the same time the dephosphorylation of MAP kinase and p90rsk was observed. Our results indicate that 1) MEK plays important but not indispensable roles in microtubule organization; 2) MEK keeps normal meiotic spindle morphology, targets peripheral spindle positioning and regulates asymmetric division by activating some unknown substrates other than MAP kinase /p90rsk; and 3) activation of MEK/ERK/p90rsk cascade maintains MII arrest in mouse oocytes.  相似文献   

13.
This paper reports on the activation of p90rsk during meiotic maturation and the inactivation of p90rsk after electrical parthenogenetic activation of rat oocytes. In addition, the correlation between p90rsk and MAP kinases after different treatments was studied. We assessed p90rsk activity by examining its electrophoretic mobility shift on SDS-PAGE and evaluated ERK1+2 activity by both mobility shift and a specific antibody against phospho-MAP kinase. The phosphorylation of p90rsk during rat oocyte maturation was a sequential process that may be divided into two stages: the first stage was partial phosphorylation, which was irrelevant with MAP kinases because p90rsk phosphorylation took place prior to activation of MAP kinases. The second stage inferred full activation occurred at the time when MAP kinases began to be activated (3 h after germinal visicle breakdown). Evidence for the involvement of MAP kinases in the p90rsk phosphorylation was further obtained by the following approaches: (1) okadaic acid (OA) accelerated the phosphorylation of both MAP kinases and p90rsk; (2) OA induced phosphorylation of both MAP kinases and p90rsk in the presence of IBMX; (3) when activation of MAP kinases was inhibited by cycloheximide, p90rsk phosphorylation was also abolished; (4) dephosphorylation of p90rsk began to take place at 3 h post-activation, temporally correlated with the completion of MAP kinase inactivation; (5) phosphorylation of both kinases was maintained in oocytes that failed to form pronuclei after stimulation; (6) OA abolished the dephosphorylation of both kinases after parthenogenetic activation. Our data suggest that MAP kinases are not required for early partial activation of p90rsk but are required for full activation of p90rsk during rat oocyte maturation, and that p90rsk dephosphorylation occurs following MAP kinase inactivation after parthenogenetic activation of rat oocytes.  相似文献   

14.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

15.
The overall objective was to elucidate the phosphorylation pattern and activity of the kinase p90rsk, a substrate of mitogen-activated protein kinase (MAPK), during in vitro and in vivo maturation of pig oocytes. Cumulus-oocyte complexes were collected from slaughtered pigs and matured in vitro (0, 22, 26, 30, 34, 46 h) with and without the MEK inhibitor U0126. For in vivo maturation, gilts were stimulated with equine chorionic gonadotrophin (eCG) (600-800 IU). Maturation was induced 72 h later with hCG (500 IU). Oocytes were obtained surgically (0, 22, 30 h). The samples were submitted to electrophoresis and protein blotting analysis. Enhanced chemiluminescence was used for visualization. In vitro matured oocytes were further submitted to a commercially available radioactive kinase assay to determine kinase activity. It was shown that oocytes, as well as cumulus cells, already possess a partially phosphorylated p90rsk at the time of removal from follicles, with a further phosphorylation of the molecule occurring between 22-24 h after the initiation of culture, and in vivo maturation. The phosphorylation of p90rsk coincides with the phosphorylation of MAPK and can be prevented by U0126, indicating a MAPK-dependent phosphorylation of p90rsk. Phosphorylation of the in vivo matured oocytes occurred shown as a band of less than 200 kDa. This is presumably a molecule complex, with MAPK not being a component. Therefore, the p90rsk molecule in vivo exists as a dimer. Determination of kinase activity demonstrated decreasing enzyme activities. This led to the conclusion that the assay is not specific for p90rsk, instead measuring p70S6 kinase activities.  相似文献   

16.
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

17.
Degradation of proteins mediated by the ubiquitin-proteasome pathway (UPP) plays essential roles in the eukaryotic cell cycle. The main aim of the present study was to analyze the functional roles and regulatory mechanisms of the UPP in pig oocyte meiotic maturation, activation, and early embryo mitosis by drug treatment, Western blot analysis, and confocal microscopy. By using the hypoxanthine-maintained meiotic arrest model, we showed that the meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated in a dose- and time-dependent manner by two potent and cell-permeable proteasome inhibitors. Both the mitogen-activated protein kinase (MAPK) kinase inhibitor U0126 and the maturation-promoting factor inhibitor roscovitine overcame the stimulation of germinal vesicle breakdown induced by proteasome inhibitors. The phosphorylation of MAPK and p90rsk and the expression of cyclin B1 increased in a dose- and time-dependent manner when treated with proteasome inhibitors during oocyte in vitro-maturation culture. Both U0126 and roscovitine inhibited the phosphorylation of MAPK and p90rsk, and the synthesis of cyclin B1 stimulated by proteasome inhibitors. When matured oocytes were pretreated with proteasome inhibitors and then fertilized or artificially activated, the second polar body emission and the pronuclear formation were inhibited, and the dephosphorylation of MAPK and p90rsk as well as the degradation of cyclin B1 that should occur after oocyte activation were also inhibited. We also investigated, to our knowledge for the first time, the subcellular localization of 20S proteasome alpha subunits at different stages of oocyte and early embryo development. The 20S proteasome alpha subunits were accumulated in the germinal vesicle, around the condensed chromosomes at prometaphase, with spindle at metaphase I and II, the region between the separating chromosomes, and especially the midbody at anaphase I and telophase I, the pronucleus, and the nucleus in early embryonic cells. In conclusion, our results suggest that the UPP is important at multiple steps of pig oocyte meiosis, fertilization, and early embryonic mitosis and that it may play its roles by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

18.
Numerous studies have demonstrated that activation of the mitogen-activated protein (MAP) kinase is involved in the maturation of oocytes. In this study, the expression and phosphorylation of MAP kinase and p90rsk, one of the substrates of MAP kinase, during rabbit oocyte maturation were studied. The results showed that MAP kinase phosphorylation began to occur after germinal vesicle breakdown (GVBD) and the active form was maintained until metaphase II. p90rsk was also activated after GVBD following MAP kinase activation. Immunofluorescent analysis showed that p90rsk was enriched in the nuclear area after GVBD and was gradually localised to the spindle. When GVBD was inhibited by increased cAMP or decreased protein kinase C activity, the phosphorylation of both MAP kinase and p9rsk was blocked. Our data suggest that (1) MAP kinase/p90rsk activation is not necessary for GVBD, but plays an important role in the post-GVBD events including spindle assembly in rabbit oocytes; and (2) MAP kinase/p9rsk activation is down-regulated by cAMP and up-regulated byprotein kinase C in cumulus-enclosed rabbit oocytes.  相似文献   

19.
Calcium signal is important for the regulation of meiotic cell cycle in oocytes, but its downstream mechanism is not well known. The functional roles of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes were studied by drug treatment, Western blot analysis, kinase activity assay, indirect immunostaining, and confocal microscopy. The results indicated that meiotic resumption of both cumulus-enclosed and denuded oocytes was prevented by CaMKII inhibitor KN-93, Ant-AIP-II, or CaM antagonist W7 in a dose-dependent manner, but only germinal vesicle breakdown (GVBD) of denuded oocytes was inhibited by membrane permeable Ca2+ chelator BAPTA-AM. When the oocytes were treated with KN-93, W7, or BAPTA-AM after GVBD, the first polar body emission was inhibited. A quick elevation of CaMKII activity was detected after electrical activation of mature pig oocytes, which could be prevented by the pretreatment of CaMKII inhibitors. Treatment of oocytes with KN-93 or W7 resulted in the inhibition of pronuclear formation. The possible regulation of CaMKII on maturation promoting factor (MPF), mitogen-activated protein kinase (MAPK), and ribosome S6 protein kinase (p90rsk) during meiotic cell cycles of pig oocytes was also studied. KN-93 and W7 prevented the accumulation of cyclin B and the full phosphorylation of MAPK and p90rsk during meiotic maturation. When CaMKII activity was inhibited during parthenogenetic activation, cyclin B, the regulatory subunit of MPF, failed to be degraded, but MAPK and p90rsk were quickly dephosphorylated and degraded. Confocal microscopy revealed that CaM and CaMKII were localized to the nucleus and the periphery of the GV stage oocytes. Both proteins were concentrated to the condensed chromosomes after GVBD. In oocytes at the meiotic metaphase MI or MII stage, CaM distributed on the whole spindle, but CaMKII was localized only on the spindle poles. After transition into anaphase, both proteins were translocated to the area between separating chromosomes. All these results suggest that CaMKII is a multifunctional regulator of meiotic cell cycle and spindle assembly and that it may exert its effect via regulation of MPF and MAPK/p90rsk activity during the meiotic maturation and activation of pig oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号