首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  1. An analysis of whether niche differentiation in ball-rolling dung beetles can be explained by the way in which they regulate their body temperature was conducted.
2.  A priori assumptions were: (i) if thermoregulation affects niche partitioning, sympatric species must have different endothermic strategies that minimise encounters; or, alternatively (ii) if two co-occurring species show the same thermoregulation pattern and their flight periods overlap, they might be avoiding competition by exhibiting different resource preferences or different food relocation behaviour.
3. The ball-rolling dung beetles studied showed a hierarchical structure based on the species' endothermic capacity, measured as temperature excess [ T ex= difference between body temperature ( T b) and ambient temperature ( T a)]. Those with a high T ex (10–15 °C) were located exclusively at altitudes >1000 m a.s.l. On the coastal plains, species with a high T ex were restricted to flying at night when the T a was lower. Species with a lower T ex (less than 10 °C higher than T a) were found in the coastal plains zone.
4. Where there was sympatry with similar trophic habits, the species involved showed very different thermal niches, and where there was significant overlap of thermal niches between sympatric species, trophic habits of species were very different.
5. The results suggest that it is possible to use the concept of the thermal niche as a tool to explain interspecific interactions and the spatial distribution of species.  相似文献   

2.
The cryptic, subterranean ways of golden moles (Chrysochloridae) hamper studies of their biology in the field. Ten species appear on the IUCN red list, but the dearth of information available for most inhibits effective conservation planning. New techniques are consequently required to further our understanding and facilitate informed conservation management decisions. We studied the endangered Juliana's golden mole Neamblysomus julianae and aimed to evaluate the feasibility of using implantable temperature sensing transmitters to remotely acquire physiological and behavioural data. We also aimed to assess potential body temperature ( T b) fluctuations in relation to ambient soil temperature ( T a) in order to assess the potential use of torpor. Hourly observations revealed that T b was remarkably changeable, ranging from 27 to 33 °C. In several instances T b declined during periods of low T a. Such 'shallow torpor' may result in a daily energy saving of c . 20%. Behavioural thermoregulation was used during periods of high T a by selecting cooler microclimates, while passive heating was used to raise T b early morning when T a was increasing. In contrast to anecdotal reports of nocturnal patterns of activity, our results suggest that activity is flexible, being primarily dependent on T a. These results exemplify how behavioural patterns and microclimatic conditions can be examined in this and other subterranean mammal species, the results of which can be used in the urgently required conservation planning of endangered Chrysochlorid species.  相似文献   

3.
Members of the family Myrmecophagidae (i.e. anteaters) show a variety of anatomical and behavioural adaptations to deal with their low-energy diet; for example, they all have low body temperatures in comparison with other eutherian mammals. In this study, we investigated the tympanic membrane temperatures ( T mt) of two giant anteaters and three southern tamanduas, housed in captivity and exposed to natural climatic variations in temperature, using an infrared thermometer. Additionally, we measured external dorsal temperature ( T d), air temperature ( T a), substrate temperature ( T s) and whether the subject was active or not. To understand the effect of time of day on these variables, we recorded them, on the hour, over four 24-h cycles for each animal during which the subjects were non-restrained within their enclosures. The results show that both giant anteaters and southern tamanduas allow their T mt to reduce between 4.0 and 6.5 °C when they are sleeping. Furthermore, linear regressions between T mt and T a or T s showed that the giant anteaters were much more affected by T a and T s than the southern tamanduas. Both species also showed higher T mt when active (comparing subjects active and inactive at the same T a). Both species appear to use shallow torpor during a normal 24-h cycle probably as a means to economize energy. The torpor in giant anteaters occurred during the night when asleep, whereas in the southern tamanduas it occurred at any time of day when asleep. The giant anteaters appeared to be more directly affected by environmental temperature than the southern tamanduas.  相似文献   

4.
The effects of hyperoxia and change of temperature (range 20–30° C) on blood gases were studied in the teleost fish Piaractus mesopotamicus , native to several major river systems in Brazil. Large hyperoxia-induced increases of arterial P o2 ( P ao2) indicated that true branchial blood shunts are negligible in relation to total gill perfusion. This implies that blood gases will be influenced by ventilation rather than by shunts. Acute variations of temperature ( t ) were accompanied by changes of arterial blood pH (on the average Δ p HaΔt−1 of — 0·015 units °C−1), due mainly to alterations of P aco2: 2·4 mmHg at 20° C, 5·0 mmHg at 30° C. Concomitantly, P ao2 declined from 116 mmHg (20° C) to 89 mmHg (30° C). The data suggest that temperature-induced changes of acid-base status depend mainly on gill ventilation and that the decrease of P ao2 with higher temperature is a result of this regulation.  相似文献   

5.
Pinfish Lagodon rhomboides acclimation rates were determined by modelling changes in critical thermal minimum ( T crit min, ° C) estimates at set intervals following a temperature decrease of 3–4° C. The results showed that pinfish gained a total of 3·7° C of cold tolerance over a range of acclimation temperatures ( T acc, ° C) from (23–12° C), that cold tolerance increased with exposure time to the reduced temperature at all T acc, but that the rate of cold tolerance accruement (mean 0·14° C day−1) was independent of T acc. A highly significant ( P < 0·001) multivariate predictive model was generated that described the acclimation rates and thermal tolerance of pinfish exposed to reduction in water temperature: log10 T crit min= 0·41597 − 0·01704 T acc+ 0·04320 T plunge− 0·08376[log10 ( t + 1)], where T plunge is plunge temperature (° C) and t is the time (days). A comparison of the present data, with acclimation rate data for other species, suggests that factors such as latitude or geographic range may play a more important role than ambient temperature in determining cold acclimation rates in fishes.  相似文献   

6.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

7.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

8.
Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block (between −3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima ( T opt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate-reducing bacteria (SRB). However, high rates at in situ temperatures compared with maximum rates showed the predominance of psychrophilic SRB even at high incubation temperatures. Changing apparent activation energies ( E a) showed that increasing temperatures had an initial negative impact on sulfate reduction that was weaker after prolonged incubations, which could imply an acclimatization response rather than a selection process of the SRB community. The microbial community composition was analysed by targeting the 16S ribosomal RNA using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The results showed the decline of specific groups of SRB and confirmed a strong impact of increasing temperatures on the microbial community composition of arctic sediment. Conversely, in seasonally changing sediment sulfate reduction rates and sulfate-reducing bacterial abundance changed little in response to changing temperature.  相似文献   

9.
Thermal tolerance of a northern population of striped bass Morone saxatilis   总被引:1,自引:0,他引:1  
Thermal tolerance of age 0+ year Shubenacadie River (Nova Scotia, Canada) striped bass Morone saxatilis juveniles (mean ± s . e . fork length, L F, 19·2 ± 0·2 cm) acclimated in fresh water to six temperatures from 5 to 30° C was measured by both the incipient lethal technique (72 h assay), and the critical thermal method ( C m). The lower incipient lethal temperature ranged from 2·4 to 11·3° C, and the upper incipient lethal temperature ( I U) from 24·4 to 33·9° C. The area of thermal tolerance was 618° C2. In a separate experiment, the I U of large age 2+ year fish (34·4 ± 0·5 cm L F) was 1·2 and 0·6° C lower ( P < 0·01) than smaller age 1+ year fish (21·8 ± 0·5 cm L F) at acclimation temperatures of 16 and 23° C. Using the C m, loss of equilibrium occurred at 27·4–37·7° C, loss of righting response at 28·1–38·4° C and onset of spasms at 28·5–38·8° C, depending on acclimation temperature. The linear regression slopes for these three responses were statistically similar (0·41; P > 0·05), but the intercepts differed (25·3, 26·0 and 26·5° C; P < 0·01). The thermal tolerance of this northern population appears to be broader than southern populations.  相似文献   

10.
Abstract. Third-instar larvae of the goldenrod gall fly ( Eurosta solidaginis Fitch) live inside ball galls on goldenrod plants from summer to the following spring.Because galls are highly exposed to the weather, larvae experience substantial variations in body temperature.This study documents the oxygen consumption of gall fly larvae with regard to the effects of ambient temperature, seasonal conditioning, and prior exposure to subzero temperature.The body mass of larvae doubles between the late summer and the autumn; it subsequently undergoes a modest decline by early winter.The O2, consumption of field-acclimatized larvae increases with ambient temperature, especially between 0 and 10°C (Q10= 2.6-3.4).The thermal sensitivity of metabolism declines at higher ambient temperatures, most notably during the autumn/early winter.After exposure to 15°C for 1 week, autumn and early winter larvae maintain much lower rates of O2 consumption than do late summer specimens.Prior exposure to -5°C for 24 h did not influence the O2 consumption of larvae.Low thermal sensitivity of O2 consumption, especially at higher ambient temperatures, is an energy-sparing mechanism during seasonal inactivity.Indeed, the persistence of this metabolic pattern in larvae exposed to 15°C suggests that they have entered a state of diapause.  相似文献   

11.
The temperature differential (Δ T ) between a body surface and the environment influences an organism's heat balance. In Sarasota Bay, FL, where ambient water temperature ( T w) ranges annually from 11° to 33°C, Δ T was investigated in a resident community of bottlenose dolphins ( Tursiops truncatus ). Dorsal fin surface temperatures ( T dfin) were measured on wild, free-swimming dolphins using infrared thermography. Field and laboratory calibration studies were also undertaken to assess the efficacy of this non-invasive technology in the marine environment. The portability of infrared thermography permitted measurements of T dfin across the entire range of environmental temperatures experienced by animals in this region. Results indicated a positive, linear relationship between T dfin and T w ( r 2= 0.978, P < 0.001). On average, T dfin was 0.9°C warmer than T w across seasons, despite the 22°C annual range in T w. Changes in integumentary and vascular insulation likely account for the stability of Δ T dfin − w and the protection of core temperature ( T core) across seasons. The high thermal conductivity of water may also influence this Δ T . The use of infrared thermography is an effective, non-invasive method of assessing dorsal fin skin surface temperatures (±1°C) across large numbers of wild, free-swimming dolphins throughout their thermally dynamic aquatic environment.  相似文献   

12.
Elevated CO2 appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO2, temperature and drought on plant growth and physiology. We grew canola ( Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol−1) and elevated (740 μmol mol−1) CO2 levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO2 had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO2 assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO2 generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO2 partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought.  相似文献   

13.
Gut evacuation and absorption efficiency of walleye larvae   总被引:6,自引:0,他引:6  
Gut evacuation and absorption efficiency in zooplanktivorous walleye Stizostedion vitreum larvae (10–19 mm; 0.53–6.8 mg dry weight) were examined in the laboratory. The decline in dry weight of whole digestive tract contents was examined at 15, 20, and 25) C in discontinuous feeding larvae. The observed relationship between short-term evacuation rate and gut fullness indicated that evacuation approximated most closely an exponential decline. When gut evacuation rate, R , was calculated as the slope of loge gut fullness v . time there were significant effects of temperature and walleye size on R . Gut evacuation rate was higher at 20° C than at 15 or 25° C and declined with increasing walleye dry weight. Absorption efficiency at 20° C was examined by qualitative analysis of food and faeces. Apparent digestibility, D a, of crustacean zooplankton increased with gut retention time and declined with walleye dry weight. Maximum D a was estimated to be 79% of organic matter from food retained in the gut for 6 h.  相似文献   

14.
Effect of temperature on swimming performance of sea bass juveniles   总被引:1,自引:0,他引:1  
At four temperatures ( T= 15, 20, 25 and 28° C) swimming performance of Dicentrarchus labrax was significantly correlated with total length (23–43 mm L T); r2=0.623–0.829). The relative critical swimming speed ( RU crit= U crit L T−1), where U crit is the critical swimming speed, was constant throughout the L T range studied. The significant effect of temperature on the relative critical swimming speed was described binomially: RU crit=−0.0323T2+ 1.578 T −10.588 (r2=1). The estimated maximum RU crit (8.69 L T s−1) was achieved at 24.4° C, and the 90% performance level was estimated between 19.3 and 29.6° C.  相似文献   

15.
The effects of acute temperature change on the cost of bluegill Lepomis macrochirus swimming were quantified. At 14° C, maximum labriform swimming speed ( U lab,max) was reduced relative to that at the acclimation temperature of 22° C, but total cost of transport ( T TC) remained unchanged. At 30° C, U lab,max was the same as at 22° C, but T TC was 66% greater.  相似文献   

16.
Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 °C for 15–30 min, and then heated to a final internal temperature of 60 °C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 °C increased 1·56- and 1·50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 °C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held at 15 or 28 °C. A 25 min heat shock at 46 °C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.  相似文献   

17.
The influence of temperature on life-table parameters, fecundity and survivorship of the predatory ladybird, Stethorus gilvifrons , fed on Tetranychus urticae was determined at seven constant temperatures of 15°C, 20°C, 25°C, 28°C, 30°C, 35°C and 40°C. No development was observed at 40°C, thus being regarded as the threshold for the development of S. gilvifrons . The results indicate a significant decrease in male and female longevity with increasing temperature from 15°C to 35°C. The longest and shortest longevity were 18.40 and 12.75 days for males and 17.40 and 8.80 days for females, respectively. The intrinsic rate of natural increase ( r m ) and the net reproductive rate ( R 0) of S. gilvifrons linearly increased with increasing temperatures from 15°C to 35°C, while the mean generation time ( T ) and doubling time (DT) decreased linearly within this temperature range. The highest values of r m (0.240 females/female/day) and R 0 (59.27 females/female) and the lowest mean generation time (17.01 days) and DT (2.88 days) were recorded at 35°C. The maximum (185.50 eggs) and minimum (25.50 eggs) measurement of total fecundity was also recorded at 35°C and 15°C, respectively. The results indicate that temperature greatly affected fecundity, survivorship and life-table parameters of S. gilvifrons , and that 35°C is a suitable temperature for population growth of this predator.  相似文献   

18.
Abstract: The influence of temperature on life table parameters of Podisus nigrispinus (Dallas) (Het., Pentatomidae) fed with Alabama argillacea (Hübner) (Lep., Noctuidae) larvae was studied. This predator was kept at constant temperatures of 20, 23, 25, 28, 30 and 33±0.2°C, at relative humidity of 60±10% and photoperiod of L : D 14 : 10. Gross (GRR) and net ( R 0) reproductive rates of P. nigrispinus ranged from 1.6 to 366.6 and from 0.02 to 189.5 females/female at temperatures of 33 and 28°C, respectively; generation time ( T  ) ranged from 33.3 (33°C) to 85.5 (20°C) days; doubling time ( D ) from 0.82 (33°C) to 17.8 (20°C) days; intrinsic rate of increase ( r m ) from −0.13 (33°C) to 0.12 (28°C) per day; and the finite rate of increase ( λ ) from 0.88 (33°C) to 1.12 (28°C) females/female added to the population per day. The ideal age to release P. nigrispinus should be when this predator presents higher reproductive values (VR x ); that is, its adults are about 7 days old, independent of prevailing temperature. Population growth of P. nigrispinus was affected by temperature with maximum numerical response between 28 and 30°C. The negative population growth shown at 33°C may not occur in natural conditions due to milder microclimate in the cotton agroecosystem and due to oscillations of temperature in the course of the day.  相似文献   

19.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

20.
Stomatal response to humidity: implications for transpiration   总被引:1,自引:1,他引:0  
Abstract. Transpiration rates from apple leaves are analysed in terms of the ratio of latent heat flux (λ E ) to leaf net radiation ( Q 1) and the climatological resistance ( ri ). Increases in stomatal resistance with increasing leaf to air vapour pressure gradient ( D ), described by an empirical model, are incorporated in the analysis. This humidity effect causes the proportion of energy dissipated as latent heat to fall as Q 1 increases, so that leaf transpiration rates in high energy environments are likely to be similar to those in lower energy environments. Boundary layer resistance ( r a) exerts an increasingly important effect on transpiration rates as Q 1 increases. At constant Q 1 stomatal closure in response to increasing D results in very small changes in leaf temperature ( T 1) across a wide range of ambient vapour pressure deficits (δ e ); r a is then the major factor determining T 1. The implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号