首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Side-chain modeling with an optimized scoring function   总被引:1,自引:0,他引:1       下载免费PDF全文
Modeling side-chain conformations on a fixed protein backbone has a wide application in structure prediction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring function, and search strategy. We have developed a new and simple scoring function, which operates on side-chain rotamers and consists of the following energy terms: contact surface, volume overlap, backbone dependency, electrostatic interactions, and desolvation energy. The weights of these energy terms were optimized to achieve the minimal average root mean square (rms) deviation between the lowest energy rotamer and real side-chain conformation on a training set of high-resolution protein structures. In the course of optimization, for every residue, its side chain was replaced by varying rotamers, whereas conformations for all other residues were kept as they appeared in the crystal structure. We obtained prediction accuracy of 90.4% for chi(1), 78.3% for chi(1 + 2), and 1.18 A overall rms deviation. Furthermore, the derived scoring function combined with a Monte Carlo search algorithm was used to place all side chains onto a protein backbone simultaneously. The average prediction accuracy was 87.9% for chi(1), 73.2% for chi(1 + 2), and 1.34 A rms deviation for 30 protein structures. Our approach was compared with available side-chain construction methods and showed improvement over the best among them: 4.4% for chi(1), 4.7% for chi(1 + 2), and 0.21 A for rms deviation. We hypothesize that the scoring function instead of the search strategy is the main obstacle in side-chain modeling. Additionally, we show that a more detailed rotamer library is expected to increase chi(1 + 2) prediction accuracy but may have little effect on chi(1) prediction accuracy.  相似文献   

2.
Kirys T  Ruvinsky AM  Tuzikov AV  Vakser IA 《Proteins》2012,80(8):2089-2098
Conformational changes in the side chains are essential for protein-protein binding. Rotameric states and unbound- to-bound conformational changes in the surface residues were systematically studied on a representative set of protein complexes. The side-chain conformations were mapped onto dihedral angles space. The variable threshold algorithm was developed to cluster the dihedral angle distributions and to derive rotamers, defined as the most probable conformation in a cluster. Six rotamer libraries were generated: full surface, surface noninterface, and surface interface-each for bound and unbound states. The libraries were used to calculate the probabilities of the rotamer transitions upon binding. The stability of amino acids was quantified based on the transition maps. The noninterface residues' stability was higher than that of the interface. Long side chains with three or four dihedral angles were less stable than the shorter ones. The transitions between the rotamers at the interface occurred more frequently than on the noninterface surface. Most side chains changed conformation within the same rotamer or moved to an adjacent rotamer. The highest percentage of the transitions was observed primarily between the two most occupied rotamers. The probability of the transition between rotamers increased with the decrease of the rotamer stability. The analysis revealed characteristics of the surface side-chain conformational transitions that can be utilized in flexible docking protocols.  相似文献   

3.
Hartmann C  Antes I  Lengauer T 《Proteins》2009,74(3):712-726
We describe a scoring and modeling procedure for docking ligands into protein models that have either modeled or flexible side-chain conformations. Our methodical contribution comprises a procedure for generating new potentials of mean force for the ROTA scoring function which we have introduced previously for optimizing side-chain conformations with the tool IRECS. The ROTA potentials are specially trained to tolerate small-scale positional errors of atoms that are characteristic of (i) side-chain conformations that are modeled using a sparse rotamer library and (ii) ligand conformations that are generated using a docking program. We generated both rigid and flexible protein models with our side-chain prediction tool IRECS and docked ligands to proteins using the scoring function ROTA and the docking programs FlexX (for rigid side chains) and FlexE (for flexible side chains). We validated our approach on the forty screening targets of the DUD database. The validation shows that the ROTA potentials are especially well suited for estimating the binding affinity of ligands to proteins. The results also show that our procedure can compensate for the performance decrease in screening that occurs when using protein models with side chains modeled with a rotamer library instead of using X-ray structures. The average runtime per ligand of our method is 168 seconds on an Opteron V20z, which is fast enough to allow virtual screening of compound libraries for drug candidates.  相似文献   

4.
We compare the modelling accuracy of two common rotamer libraries, the Dunbrack-Cohen and the 'Penultimate' rotamer libraries, with that of a novel library of discrete side chain conformations extracted from the Protein Data Bank. These side chain conformer libraries are extracted automatically from high-quality protein structures using stringent filters and maintain crystallographic bond lengths and angles. This contrasts with traditional rotamer libraries defined in terms of chi angles under the assumption of idealized covalent geometry. We demonstrate that side chain modelling onto native and near-native main chain conformations is significantly more successful with the conformer libraries than with the rotamer libraries when solely considering excluded-volume interactions. The rotamer libraries are inadequate to model side chains without atomic clashes on over 20% of targets if the backbone is held fixed in the native conformation. An algorithm is described for simultaneously modelling both main chain and side chain atoms during discrete ab initio sampling. The resulting models have equivalent root mean square deviations from the experimentally determined protein loops as models from backbone-only ensembles, indicating that all-atom modelling does not detract from the accuracy of conformational sampling.  相似文献   

5.
Accurate prediction of the placement and comformations of protein side chains given only the backbone trace has a wide range of uses in protein design, structure prediction, and functional analysis. Prediction has most often relied on discrete rotamer libraries so that rapid fitness of side-chain rotamers can be assessed against some scoring function. Scoring functions are generally based on experimental parameters from small-molecule studies or empirical parameters based on determined protein structures. Here, we describe the NCN algorithm for predicting the placement of side chains. A predominantly first-principles approach was taken to develop the potential energy function incorporating van der Waals and electrostatics based on the OPLS parameters, and a hydrogen bonding term. The only empirical knowledge used is the frequency of rotameric states from the PDB. The rotamer library includes nearly 50,000 rotamers, and is the most extensive discrete library used to date. Although the computational time tends to be longer than most other algorithms, the overall accuracy exceeds all algorithms in the literature when placing rotamers on an accurate backbone trace. Considering only the most buried residues, 80% of the total residues tested, the placement accuracy reaches 92% for chi(1), and 83% for chi(1 + 2), and an overall RMS deviation of 1 A. Additionally, we show that if information is available to restrict chi(1) to one rotamer well, then this algorithm can generate structures with an average RMS deviation of 1.0 A for all heavy side-chains atoms and a corresponding overall chi(1 + 2) accuracy of 85.0%.  相似文献   

6.
7.
A graph-theory algorithm for rapid protein side-chain prediction   总被引:19,自引:0,他引:19       下载免费PDF全文
Fast and accurate side-chain conformation prediction is important for homology modeling, ab initio protein structure prediction, and protein design applications. Many methods have been presented, although only a few computer programs are publicly available. The SCWRL program is one such method and is widely used because of its speed, accuracy, and ease of use. A new algorithm for SCWRL is presented that uses results from graph theory to solve the combinatorial problem encountered in the side-chain prediction problem. In this method, side chains are represented as vertices in an undirected graph. Any two residues that have rotamers with nonzero interaction energies are considered to have an edge in the graph. The resulting graph can be partitioned into connected subgraphs with no edges between them. These subgraphs can in turn be broken into biconnected components, which are graphs that cannot be disconnected by removal of a single vertex. The combinatorial problem is reduced to finding the minimum energy of these small biconnected components and combining the results to identify the global minimum energy conformation. This algorithm is able to complete predictions on a set of 180 proteins with 34342 side chains in <7 min of computer time. The total chi(1) and chi(1 + 2) dihedral angle accuracies are 82.6% and 73.7% using a simple energy function based on the backbone-dependent rotamer library and a linear repulsive steric energy. The new algorithm will allow for use of SCWRL in more demanding applications such as sequence design and ab initio structure prediction, as well addition of a more complex energy function and conformational flexibility, leading to increased accuracy.  相似文献   

8.
The excluded volume occupied by protein side-chains and the requirement of high packing density in the protein interior should severely limit the number of side-chain conformations compatible with a given native backbone. To examine the relationship between side-chain geometry and side-chain packing, we use an all-atom Monte Carlo simulation to sample the large space of side-chain conformations. We study three models of excluded volume and use umbrella sampling to effectively explore the entire space. We find that while excluded volume constraints reduce the size of conformational space by many orders of magnitude, the number of allowed conformations is still large. An average repacked conformation has 20 % of its chi angles in a non-native state, a marked reduction from the expected 67 % in the absence of excluded volume. Interestingly, well-packed conformations with up to 50 % non-native chi angles exist. The repacked conformations have native packing density as measured by a standard Voronoi procedure. Entropy is distributed non-uniformly over positions, and we partially explain the observed distribution using rotamer probabilities derived from the Protein Data Bank database. In several cases, native rotamers that occur infrequently in the database are seen with high probability in our simulation, indicating that sequence-specific excluded volume interactions can stabilize rotamers that are rare for a given backbone. In spite of our finding that 65 % of the native rotamers and 85 % of chi(1) angles can be predicted correctly on the basis of excluded volume only, 95 % of positions can accommodate more than one rotamer in simulation. We estimate that, in order to quench the side-chain entropy observed in the presence of excluded volume interactions, other interactions (hydrophobic, polar, electrostatic) must provide an additional stabilization of at least 0.6 kT per residue in order to single out the native state.  相似文献   

9.
Renfrew PD  Butterfoss GL  Kuhlman B 《Proteins》2008,71(4):1637-1646
Amino acid side chains adopt a discrete set of favorable conformations typically referred to as rotamers. The relative energies of rotamers partially determine which side chain conformations are more often observed in protein structures and accurate estimates of these energies are important for predicting protein structure and designing new proteins. Protein modelers typically calculate side chain rotamer energies by using molecular mechanics (MM) potentials or by converting rotamer probabilities from the protein database (PDB) into relative free energies. One limitation of the knowledge‐based energies is that rotamer preferences observed in the PDB can reflect internal side chain energies as well as longer‐range interactions with the rest of the protein. Here, we test an alternative approach for calculating rotamer energies. We use three different quantum mechanics (QM) methods (second order Møller‐Plesset (MP2), density functional theory (DFT) energy calculation using the B3LYP functional, and Hartree‐Fock) to calculate the energy of amino acid rotamers in a dipeptide model system, and then use these pre‐calculated values in side chain placement simulations. Energies were calculated for over 36,000 different conformations of leucine, isoleucine, and valine dipeptides with backbone torsion angles from the helical and strand regions of the Ramachandran plot. In a subset of cases these energies differ significantly from those calculated with standard molecular mechanics potentials or those derived from PDB statistics. We find that in these cases the energies from the QM methods result in more accurate placement of amino acid side chains in structure prediction tests. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

10.
Protein side chains make most of the specific contacts between proteins and other molecules, and their conformational properties have been studied for many years. These properties have been analyzed primarily in the form of rotamer libraries, which cluster the observed conformations into groups and provide frequencies and average dihedral angles for these groups. In recent years, these libraries have improved with higher resolution structures and using various criteria such as high thermal factors to eliminate side chains that may be misplaced within the crystallographic model coordinates. Many of these side chains have highly non-rotameric dihedral angles. The origin of side chains with high B-factors and/or with non-rotameric dihedral angles is of interest in the determination of protein structures and in assessing the prediction of side chain conformations. In this paper, using a statistical analysis of the electron density of a large set of proteins, it is shown that: (1) most non-rotameric side chains have low electron density compared to rotameric side chains; (2) up to 15% of chi1 non-rotameric side chains in PDB models can clearly be fit to density at a single rotameric conformation and in some cases multiple rotameric conformations; (3) a further 47% of non-rotameric side chains have highly dispersed electron density, indicating potentially interconverting rotameric conformations; (4) the entropy of these side chains is close to that of side chains annotated as having more than one chi(1) rotamer in the crystallographic model; (5) many rotameric side chains with high entropy clearly show multiple conformations that are not annotated in the crystallographic model. These results indicate that modeling of side chains alternating between rotamers in the electron density is important and needs further improvement, both in structure determination and in structure prediction.  相似文献   

11.
The observed features of side-chain rotamer distributions in protein alpha-alpha-hairpins are described. It was found that in left-turned alpha-alpha-hairpins most side chains occupying d-positions have t-rotamers and those in g-positions g- -rotamers. In right-turned alpha-alpha-hairpins, most side chains in a-positions adopt g- -rotamers and those in e-positions t-rotamers. Analysis of these features enables us to conclude that selection of side-chain rotamers in alpha-alpha-hairpins depends on both the type of the alpha-helix packing and the residue position. The observed features can be explained taking into account the squeezing mechanism according to which interhelical interactions bring alpha-helices closer to each other and this effect squeezes side chains out of the helix-helix interface and as a result they adopt unique conformations.  相似文献   

12.
We present a Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank. This is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average chi angles for a full range of phi, psi values. The Bayesian analysis used here provides a rigorous statistical method for taking account of varying amounts of data. Bayesian statistics requires the assumption of a prior distribution for parameters over their range of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the prior distribution and the data. For the chi 2, chi 3, and chi 4 rotamer prior distributions, we assume that the probability of each rotamer type is dependent only on the previous chi rotamer in the chain. For the backbone-dependence of the chi 1 rotamers, we derive prior distributions from the product of the phi-dependent and psi-dependent probabilities. Molecular mechanics calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone-side-chain interactions. The new library is suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures.  相似文献   

13.
Optimizing amino acid conformation and identity is a central problem in computational protein design. Protein design algorithms must allow realistic protein flexibility to occur during this optimization, or they may fail to find the best sequence with the lowest energy. Most design algorithms implement side-chain flexibility by allowing the side chains to move between a small set of discrete, low-energy states, which we call rigid rotamers. In this work we show that allowing continuous side-chain flexibility (which we call continuous rotamers) greatly improves protein flexibility modeling. We present a large-scale study that compares the sequences and best energy conformations in 69 protein-core redesigns using a rigid-rotamer model versus a continuous-rotamer model. We show that in nearly all of our redesigns the sequence found by the continuous-rotamer model is different and has a lower energy than the one found by the rigid-rotamer model. Moreover, the sequences found by the continuous-rotamer model are more similar to the native sequences. We then show that the seemingly easy solution of sampling more rigid rotamers within the continuous region is not a practical alternative to a continuous-rotamer model: at computationally feasible resolutions, using more rigid rotamers was never better than a continuous-rotamer model and almost always resulted in higher energies. Finally, we present a new protein design algorithm based on the dead-end elimination (DEE) algorithm, which we call iMinDEE, that makes the use of continuous rotamers feasible in larger systems. iMinDEE guarantees finding the optimal answer while pruning the search space with close to the same efficiency of DEE. Availability: Software is available under the Lesser GNU Public License v3. Contact the authors for source code.  相似文献   

14.
The distribution of the chi(1), chi(2) dihedral angles in a dataset consisting of 12 unrelated 4-alpha-helical bundle proteins was determined and qualitatively compared with that observed in globular proteins. The analysis suggests that the 4-alpha-helical bundle motif could occasionally impose steric constraints on side chains: (i) the side-chain conformations are limited to only a subset of the conformations observed in globular proteins and for some amino acids they are sterically more constrained than those in helical regions of globular proteins; (ii) aspartic acid and asparagine occasionally adopt rotamers that have not been previously reported for globular or helical proteins; (iii) some rotamers of tyrosine and isoleucine are predominantly or exclusively associated with hydrophobic core positions (a, d); (iv) mutations in the hydrophobic core occur preferentially between residue types which among other physicochemical properties also share a predominant rotamer.  相似文献   

15.
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.  相似文献   

16.
Dead-end elimination with backbone flexibility   总被引:1,自引:0,他引:1  
MOTIVATION: Dead-End Elimination (DEE) is a powerful algorithm capable of reducing the search space for structure-based protein design by a combinatorial factor. By using a fixed backbone template, a rotamer library, and a potential energy function, DEE identifies and prunes rotamer choices that are provably not part of the Global Minimum Energy Conformation (GMEC), effectively eliminating the majority of the conformations that must be subsequently enumerated to obtain the GMEC. Since a fixed-backbone model biases the algorithm predictions against protein sequences for which even small backbone movements may result in a significantly enhanced stability, the incorporation of backbone flexibility can improve the accuracy of the design predictions. If explicit backbone flexibility is incorporated into the model, however, the traditional DEE criteria can no longer guarantee that the flexible-backbone GMEC, the lowest-energy conformation when the backbone is allowed to flex, will not be pruned. RESULTS: We derive a novel DEE pruning criterion, flexible-backbone DEE (BD), that is provably accurate with backbone flexibility, guaranteeing that no rotamers belonging to the flexible-backbone GMEC are pruned; we also present further enhancements to BD for improved pruning efficiency. The results from applying our novel algorithms to redesign the beta1 domain of protein G and to switch the substrate specificity of the NRPS enzyme GrsA-PheA are then compared against the results from previous fixed-backbone DEE algorithms. We confirm experimentally that traditional-DEE is indeed not provably-accurate with backbone flexibility and that BD is capable of generating conformations with significantly lower energies, thus confirming the feasibility of our novel algorithms. AVAILABILITY: Contact authors for source code.  相似文献   

17.
Several regularities were observed for the distribution of side-chain rotamers in α-α hairpins of globular proteins. In left-turned α-α hairpins, most side chains adopt t rotamers in d-positions and g? rotamers in g-positions. In right-turned α-α hairpins, most side-chains adopt g? rotamers in a-positions and t rotamers in e-positions. Analysis of these regularities suggested that selection of the side-chain conformation in α-α hairpins depends on two main factors, the mode of α-helix packing and the positions of side chains in α-helices. The regularities were explained by the squeezing mechanism: interhelical interactions bring the α-helices close together so that the side chains are squeezed out of the helix-helix interface and adopt unique conformations.  相似文献   

18.
It is widely believed that the dominant force opposing protein folding is the entropic cost of restricting internal rotations. The energetic changes from restricting side-chain torsional motion are more complex than simply a loss of conformational entropy, however. A second force opposing protein folding arises when a side-chain in the folded state is not in its lowest-energy rotamer, giving rotameric strain. chi strain energy results from a dihedral angle being shifted from the most stable conformation of a rotamer when a protein folds. We calculated the energy of a side-chain as a function of its dihedral angles in a poly(Ala) helix. Using these energy profiles, we quantify conformational entropy, rotameric strain energy and chi strain energy for all 17 amino acid residues with side-chains in alpha-helices. We can calculate these terms for any amino acid in a helix interior in a protein, as a function of its side-chain dihedral angles, and have implemented this algorithm on a web page. The mean change in rotameric strain energy on folding is 0.42 kcal mol-1 per residue and the mean chi strain energy is 0.64 kcal mol-1 per residue. Loss of conformational entropy opposes folding by a mean of 1.1 kcal mol-1 per residue, and the mean total force opposing restricting a side-chain into a helix is 2.2 kcal mol-1. Conformational entropy estimates alone therefore greatly underestimate the forces opposing protein folding. The introduction of strain when a protein folds should not be neglected when attempting to quantify the balance of forces affecting protein stability. Consideration of rotameric strain energy may help the use of rotamer libraries in protein design and rationalise the effects of mutations where side-chain conformations change.  相似文献   

19.
We measured the frequency of side-chain rotamers in 14 alpha-helical and 16 beta-barrel membrane protein structures and found that the membrane environment considerably perturbs the rotamer frequencies compared to soluble proteins. Although there are limited experimental data, we found statistically significant changes in rotamer preferences depending on the residue environment. Rotamer distributions were influenced by whether the residues were lipid or protein facing, and whether the residues were found near the N- or C-terminus. Hydrogen-bonding interactions with the helical backbone perturbs the rotamer populations of Ser and His. Trp and Tyr favor side-chain conformations that allow their side chains to extend their polar atoms out of the membrane core, thereby aligning the side-chain polarity gradient with the polarity gradient of the membrane. Our results demonstrate how the membrane environment influences protein structures, providing information that will be useful in the structure prediction and design of transmembrane proteins.  相似文献   

20.
Prediction of side-chain conformations is an important component of several biological modeling applications. In this work, we have developed and tested an advanced Monte Carlo sampling strategy for predicting side-chain conformations. Our method is based on a cooperative rearrangement of atoms that belong to a group of neighboring side-chains. This rearrangement is accomplished by deleting groups of atoms from the side-chains in a particular region, and regrowing them with the generation of trial positions that depends on both a rotamer library and a molecular mechanics potential function. This method allows us to incorporate flexibility about the rotamers in the library and explore phase space in a continuous fashion about the primary rotamers. We have tested our algorithm on a set of 76 proteins using the all-atom AMBER99 force field and electrostatics that are governed by a distance-dependent dielectric function. When the tolerance for correct prediction of the dihedral angles is a <20 degrees deviation from the native state, our prediction accuracies for chi1 are 83.3% and for chi1 and chi2 are 65.4%. The accuracies of our predictions are comparable to the best results in the literature that often used Hamiltonians that have been specifically optimized for side-chain packing. We believe that the continuous exploration of phase space enables our method to overcome limitations inherent with using discrete rotamers as trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号