首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.  相似文献   

3.
A nonhomogeneous, nonstationary stochastic model of DNA sequence evolution allowing varying equilibrium G + C contents among lineages is devised in order to deal with sequences of unequal base compositions. A maximum-likelihood implementation of this model for phylogenetic analyses allows handling of a reasonable number of sequences. The relevance of the model and the accuracy of parameter estimates are theoretically and empirically assessed, using real or simulated data sets. Overall, a significant amount of information about past evolutionary modes can be extracted from DNA sequences, suggesting that process (rates of distinct kinds of nucleotide substitutions) and pattern (the evolutionary tree) can be simultaneously inferred. G + C contents at ancestral nodes are quite accurately estimated. The new method appears to be useful for phylogenetic reconstruction when base composition varies among compared sequences. It may also be suitable for molecular evolution studies.   相似文献   

4.
Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa.  相似文献   

5.
6.
1. Survival and reproduction in different habitats of a heterogeneous environment are affected by intrinsic habitat properties as well as by habitat-independent extrinsic factors. It is argued that the ranking of habitats according to quality may depend on extrinsic environmental factors that act with the same intensity in all habitats. This can happen if, across habitats, high reproductive success in the absence of extrinsic mortality is coupled with late reproduction.
2. In a model of a semelparous organism with overlapping generations that uses two habitats, the effect of different patterns of extrinsic mortality on habitat quality are analysed, as measured by the reproductive value of an egg, which estimates its expected contribution to the future gene pool.
3. Measurements of fitness components in Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) on four host species demonstrate that, across hosts, long development can be associated with high reproductive success in the absence of extrinsic mortality. As a result, the quality ranking of three out of the four hosts would be different in a stable population regulated by intraspecific competition and egg parasitoids than in a growing population or a stable population regulated by age-independent larval mortality.
4. It is suggested that habitat-independent mortality may play a role in the evolution of ecological niches.  相似文献   

7.
In the Hawaiian Islands, massive volcanoes have created extreme elevation gradients, resulting in environments ranging from nearly tropical to alpine, spread across a distance of only a few dozen kilometers. Although the Hawaiian Islands are widely recognized for opportunities to study lowland tropical forest invasions, less attention has been paid to invasions of Hawaii's upper-montane forest, sub-alpine and alpine environments. This study synthesizes current knowledge of plant naturalization in upper-montane environments of the Hawaiian Islands in order to (1) determine whether patterns of tropical versus temperate species invasion change with elevation, and (2) evaluate whether upper-montane invaders are having significant impacts on native plant communities. A total of 151 naturalized plant species have been recorded at 2000 m or higher. Most species (93%) are herbaceous, and over half (52%) are native to Europe/Eurasia. Twenty-one species (14%) are reported to be disruptive in native plant communities, mainly by forming dense stands that appear to inhibit recruitment of natives, but also by altering vegetation structure or causing changes in ecosystem processes. Fourteen species (9%) were first recorded within the past 30 years, indicating that new invasions of upper-montane habitats are ongoing. At 1200 m elevation, only 38% of naturalized species are temperate in origin, but the proportion of temperate species increases linearly with elevation up to 3000 m (alpine habitat), where all naturalized species are temperate in origin and over 80% are native to Europe/Eurasia. Declining temperature along the elevation gradient probably drives this pattern. The extreme elevation gradients in the Hawaiian Islands provide specific opportunities for comparative studies on the ecology and evolution of temperate invaders while also creating a unique field environment for understanding interactions between temperate and tropical species.  相似文献   

8.
Forecasting the spatial spread of invasive species is important to inform management planning. Niche-based species distribution models offer a well-developed framework for assessing the potential range of species. However, these models assume equilibrium between the species’ distribution and its ecological requirements. During range expansion, invasive species are not in such equilibrium due to both dispersal limitation and frequent casual occurrence in sites unsuitable to persistent populations. In this article we use the example of the invasive annual plant Ambrosia artemisiifolia in Austria to evaluate if model accuracy can be enhanced in such non-equilibrium situations by taking account of propagule pressure and by restricting model calibration to naturalized populations. Moreover, we test if model accuracy increases during invasion history using distribution data from 1984 to 2005. The results suggest that models calibrated with naturalized populations are much more accurate than those based on the total set of records. Proxies of propagule pressure slightly but significantly improve goodness of fit, accuracy, and Type I and II error rates of models calibrated with all available records but have less consistent effects on models of naturalized populations. Model accuracy did not increase during the recent invasion history, probably because the species is still far from an equilibrium distribution. We conclude that even a coarse assessment of population status with records of invasive species delivers important information for predictive modelling and that proxies of propagule pressure should be included into such models at least during early to intermediate stages of the invasion history.  相似文献   

9.
SUMMARY 1. In the upper Rhône catchment (Swiss Alps), modifications in the longitudinal pattern of environmental conditions and the benthic macroinvertebrate fauna were investigated in a glacier-fed stream (Rhône) at its confluence with a smaller glacier-fed tributary (Mutt) in June, August and September 1998. The distance to the source glacier was greater for the Mutt than for the Rhône.
2. Environmental conditions were harsher for the biota in the main stream upstream of the confluence than in the tributary. The tributary upstream of the confluence was characterised by higher taxonomic richness and abundance of the zoobenthos than the Rhône upstream.
3. Although environmental conditions in the main stream were little modified by the tributary, the fauna was richer and more diverse below the confluence. During the period of ice melt, colonisation from the Mutt led to the occurrence of faunal elements atypical of glacial streams in the main glacial stream upstream of the confluence, where water temperature remains below 4 °C.
4. Although contributing an average of only 10% to the Rhône discharge, the Mutt tributary is suggested to be the faunal driver of the system.  相似文献   

10.
Temporal trends in biological invasions are often described by a lag‐phase of little or no increase in species occurrence followed by an increase‐phase in which species occurrence rises rapidly. While several biological and environmental mechanisms may underlie lag‐phases, they may also represent statistical artefacts or temporal changes in sampling effort. To date, distinguishing the facts from these artefacts has not been possible. Here we describe a method for estimating the lag‐phase in cumulative records of species occurrence, using a piecewise regression model that explicitly differentiates the lag and increase phases. We used the von Bertalanffy, logistic, linear and exponential functions to model the increase phase, and identified the best‐fitting function using model selection techniques. We confirmed the accuracy of our method using simulated data and then estimated the length of the lag‐phase (tlag), the maximum collection rate (r) and the projected asymptotic number of records (K) using herbarium records for 105 weed species in New Zealand, while accounting for changes in sampling effort. Nearly all the New Zealand weed species had a lag‐phase, which averaged around 20–30 years, with 4% of species having a lag‐phase greater than 40 years. In more than two thirds of the cases, the accumulation of records was best modelled with the decelerating von Bertalanffy function, despite the tendency for temporal variation in sampling effort to force cumulative herbarium records to follow the sigmoidal shape of a logistic curve. A positive correlation between r and K is consistent with the assumption that the final distribution of an alien plant species reflects its rate of spread. Seemingly rare but fast‐spreading aliens may thus become tomorrow's noxious weeds. A positive correlation between inflection year and r warns that the weeds that have only begun to spread relatively recently may spread faster than previously known invaders.  相似文献   

11.
12.
13.
Taking into account the individual growth form (allometry) in a plant population and the effects of intraspecific competition on allometry under the population self-thinning condition, and adopting Ogawa's allometric equation 1/y = 1/axb + 1/c as the expression of complex allometry, the generalized model describing the change mode of r (the self-thinning exponential in the self-thinning equation, log M = K + log N, where M is mean plant mass, K is constant, and N is population density) was constructed. Meanwhile, with reference to the changing process of population density to survival curve type B, the exponential, r, was calculated using the software MATHEMATICA 4.0. The results of the numerical simulation show that (1) the value of the self-thinning exponential, r, is mainly determined by allometric parameters; it is most sensitive to change of b of the three allometric parameters, and a and c take second place; (2) the exponential, r, changes continuously from about -3 to the asymptote -1; the slope of -3/2 is a transient value in the population self-thinning process; (3) it is not a 'law' that the slope of the self-thinning trajectory equals or approaches -3/2, and the long-running dispute in ecological research over whether or not the exponential, r, equals -3/2 is meaningless. So future studies on the plant self-thinning process should focus on investigating how plant neighbor competition affects the phenotypic plasticity of plant individuals, what the relationship between the allometry mode and the self-thinning trajectory of plant population is and, in the light of evolution, how plants have adapted to competition pressure by plastic individual growth.  相似文献   

14.
Both the size of founding populations (propagule size) and environmental suitability are known to influence whether a species newly introduced to a location will establish a self-sustaining population. However, these two factors do not operate independently: it is the interaction between propagule size and environmental suitability that determines the probability an introduced population will establish. Here I use the example of dung beetle introductions to Australia to illustrate the importance of this interaction. I first describe equations that model establishment success jointly as a function of propagule size and environmental suitability. I then show how these equations provide insight into the different outcomes observed in two dung beetle species widely introduced to Australia. In one species, variation in propagule size had relatively little influence on establishment success due to large variation in environmental suitability, leading to an essentially bimodal outcome: sites were either very suitable for establishment and introductions succeeded, or sites were unsuitable and introductions failed regardless of propagule size. For the second species, there was much less variation among locations in environmental suitability, leading to propagule size having a strong influence on establishment success. These examples highlight how the interplay between environmental suitability and founding population size is central to determining the probability an introduced species will establish.  相似文献   

15.
环境因子在植物成花诱导中的作用及其机理   总被引:9,自引:0,他引:9  
高等植物的碾化规律决定于其遗传性,但是成花的基因表达还受到多和中环境因子没程度的影响。光和温度是成花诱导中最有影响的环境因子。对于光和温度等成花诱导中的作用机理,人们先后提出很多学说。  相似文献   

16.
Dispersal is a key process in biological studies of spatial dynamics, but the initiation of dispersal has often been neglected, despite strong indications that differential timing of dispersal can significantly affect dispersal distances. To investigate which plant and environmental factors determine the release of plumed seeds by the invasive thistles Carduus acanthoides and Carduus nutans, we exposed 192 flower heads of each species to increasing wind speeds in a full-factorial wind tunnel experiment with four air flow turbulence, three flower head wetness and two flower head temperature levels. The number of seed releases was highest under dry and turbulent conditions and from heads that had already lost a considerable number of seeds, but was not affected by flower head size, head angle or temperature. Inspection of the trials on video showed that higher wind speeds were needed to meet the seed release threshold in laminar flows and for C. acanthoides heads that had been wet for a longer time. Species differences were minimal, although seed release was more sensitive to lower levels of turbulence in the larger-headed and more open C. nutans heads. Knowledge of seed release biases towards weather conditions favourable for long-distance dispersal improves our understanding of the spread of invaders and allows managers to increase the efficiency of their containment strategies by applying them at crucial times.  相似文献   

17.
Biological invasions affect virtually all ecosystems on earth, but the degree to which different regions and biomes are invaded, and the quality of information from different regions, varies greatly. A large body of literature exists on the invasion of savannas in the Neotropics and northern Australia where invasive plants, especially African grasses, have had major impacts. Less has been published on plant invasions in African savannas, except for those in South Africa. Negative impacts due to plant invasions in African savannas appear to be less severe than in other regions at present. As savannas cover about 60% of the continent, with tens of millions of people relying on the services they provide, it is timely to assess the current status of invasions as a threat to these ecosystems. We reviewed the literature, contrasting the African situation with that of Neotropical and Australian savannas. A number of drivers and explanatory factors of plant invasions in savannas have been described, mostly from the Neotropics and Australia. These include herbivore presence, residence time, intentional introductions for pasture improvements, fire regimes, the physiology of the introduced species, and anthropogenic disturbance. After comparing these drivers across the three regions, we suggest that the lower extent of alien plant invasions in African savannas is largely attributable to: (1) significantly lower rates of intentional plant introductions and widespread plantings (until recently); (2) the role of large mammalian herbivores in these ecosystems; (3) historical and biogeographical issues relating to the regions of origin of introduced species; and (4) the adaptation of African systems to fire. We discuss how changing conditions in the three regions are likely to affect plant invasions in the future.  相似文献   

18.
Islands are susceptible to exotic plant invasion, and Robinson Crusoe Island (RCI), Juan Fernandez Archipelago (33°S, 78°7′W, Chile) is no exception. Through a literature review, we assessed plant invasion and compared it to other oceanic islands worldwide. Here, we discuss measures to enhance forest recovery on RCI based on knowledge accumulated from studies on RCI and other islands. Although these findings are designed to halt the progress of invasion on RCI, they could also be applied to other insular ecosystems. We addressed the following questions: (1) What is the plant invasion status on RCI in relation to other islands worldwide? (2) How imminent is biodiversity loss by plant invasion on RCI? (3) How is woody plant invasion taking place on RCI? (4) What methods are effective in controlling invasive woody species on islands worldwide? (5) What is the ability of natural forests to recover after controlling invasive plants on RCI? We found that (1) RCI is globally the fourth most invaded island for woody species. (2) Invasive woody species expansion is estimated at 4.3 ha annually. (3) Some invasive species establish under forest canopy gaps, out-competing native species. (4) Control of invasive plant species should focus on small gaps, and restoration should promote plant cover and soil protection. Mechanical and chemical control of invasive species seemed to be insufficient to prevent biodiversity loss. Developing alternatives like biological control are indispensable on RCI. (5) Six years after invasive species control, floristic composition tended to recover.  相似文献   

19.
Understanding the factors which affect the distribution of alien plants in arid islands is complicated by the complex and stochastic nature of the invasion process per se, the harsh environmental conditions, and the low number of researchers and sampling effort. We present the results of the most comprehensive inventory to date of alien vascular plant species occurring in Socotra Island, a global biodiversity hotspot just beginning to be developed. A floristic survey was conducted between 2006 and 2008 in 36 grid cells of 10?×?10?km. We integrated this data from this survey with those from scientific literature. We recorded 88 alien plant species. Tree and herbaceous species were the most common growth forms. Species from Asia and edible species were prevalent. We identified 80 species considered weeds worldwide with >50?% adapted to arid conditions. We used a two-part model to analyze the spatial distribution of naturalized and alien plant species in relation to environmental and anthropogenic factors. Altitude and human-related factors play a significant role in the distribution of both naturalized and invasive species. Notably, the latter can potentially spread mainly in the alluvial basal areas. This study underpins the knowledge about alien species and their spatial distribution in Socotra Island. It provides a baseline for plant invasion management and contributes data for the analyses of invasion processes on islands worldwide.  相似文献   

20.
The importation and sale of ornamental pond and aquarium plants is the most important pathway for the introduction of potential aquatic weeds into and subsequent spread of these within a country. Most current aquatic weeds were at one time deliberately imported for ornamental use. This article discusses a weed risk assessment approach to evaluating new potential weeds. It assesses the potential invasiveness of an aquatic plant based on its habitat versatility, competitive ability, reproductive output and dispersal mechanisms, range of potential impacts, potential distribution and resistance to management activities. The Aquatic Weed Risk Assessment Model (AWRAM) has been used to evaluate potential aquatic weeds in New Zealand, Australia and the USA. A similar approach could be used to guide the management of aquatic weeds in Europe. Banning the importation of highly ranked species effectively keeps biosecurity risks off-shore. Assessment of aquatic plant trade patterns, especially volumes of high-risk species, along with knowledge of current and potential distribution of those species and ease of management, are all factors to be considered when evaluating candidate plants for prevention of sale and distribution. This is a highly effective way of restricting both long-distance dispersal and density of propagules. A cooperative approach involving researchers, policy and trade representatives has been an effective way to achieve regulation of this risk pathway. European initiatives to prevent the distribution of potential aquatic weeds include the preparation of lists of known invasive aquatic species by the European and Mediterranean Plant Protection Organization (EPPO), with recommendations to member countries to consider measures to prevent their spread (e.g. banning importation of, banning sale and distribution of, and undertaking control programmes against those species). Belgian initiatives include an upcoming Royal Decree concerning the importation, exportation and possession of non-native invasive species, development of codes of conduct with the horticultural sector and prohibiting the sale, purchase and intentional release of these species in the wild. This article reviews these approaches and discusses other species of concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号