首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
枯草芽孢杆菌中性植酸酶的纯化和酶学性质   总被引:1,自引:0,他引:1  
从土壤中分离到了产中性植酸酶的枯草芽孢杆菌菌株并对所产植酸酶进行了分离纯化。此中性植酸酶的反应最适 pH为 7 5,最适温度为 55℃ ,在 37℃下以植酸钠为底物的Km值为 0 1 9mmol/L ,植酸酶活性依赖Ca2 +的存在。酶蛋白的分子量大小约为 45kD ,纯酶蛋白N端序列为Lys His Lys Leu Ser Asp Pro Tyr His Phe Thr。  相似文献   

2.
植酸酶产生菌的筛选与酶纯化及其性质的研究   总被引:5,自引:0,他引:5  
对从土壤中分离得到的一株产植酸酶的细菌进行了生理生化鉴定,并对植酸酶进行了分离纯化,该酶反应的最适温度约为55℃,最适pH值为5.8,植酸酶蛋白分子量约为14kD。  相似文献   

3.
从弗氏柠檬酸杆菌(Citrobacter freundii)中分离纯化了一种植酸酶并进行了酶学性质研究,其反应最适pH为4.0~4.5,最适温度为40℃,在37℃下以植酸钠为底物的Km值为0.85nmol/L,Vmax为0.53IU/(mg.min),具有较好的抗胰蛋白酶的能力。酶蛋白的分子量大小约为45kDa,成熟酶蛋白N端序列为QCAPEGYQLQQVLMM。  相似文献   

4.
黑曲霉N25株产植酸酶及酶促反应条件研究   总被引:1,自引:0,他引:1  
从植物种子中研究筛选出高产植酸酶的黑曲霉N25,进行了最适液体培养基的筛选,研究了黑曲霉N25在玉米半合成液体培养基中所产植酸酶的最适酶促反应条件。结果表明:在四种培养基中,玉米半合成液体培养基为最适培养基,黑曲霉N25产植酸酶高峰期在96h,黑曲霉N25所产植酸酶的酶促反应最适pH为2.6和4.6,并具有很好的热稳定性,一定浓度的Ca^2 ,Mg^2 ,Mn^2 ,Cr^3 ,Li^ ,EDTA和高磷是植酸酶活性的抑制剂,1.0mmol/ml聚乙二醇1000,0.3nmol/mL Fe^2 和低磷对植酸酶活性具有激活作用。  相似文献   

5.
赵赣 《生物学杂志》2010,27(3):69-70,100
迄今为止的资料表明,大多数植酸酶与酸性磷酸酶的关系密切。通过测定Km,即可判断只有以植酸(盐)为最适底物的酶(包括酸性磷酸酶)才是严格意义上的植酸酶。  相似文献   

6.
一株高产细胞表面植酸酶酵母的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对一株高产细胞表面植酸酶酵母突变株WZ4菌的细胞植酸酶进行了研究。探讨了菌体生长与产酶的关系。结果表明:菌体在培养的前期植酸酶酶活很低,培养30h后酶活迅速增加,酶活在菌体生长的平衡期达到最大,该菌产植酸酶为非生长偶联型。在此基础了解WZ4菌细胞植酸酶的性质,实验表明:该酶的最适pH为5,最适温度为50℃,Km(以植酸钠为底物)为0666mmolL。通过磷对产酶影响因素的实验研究,初步得到WZ4菌产植酸酶受控于培养基中的磷浓度的结论,即最大产酶磷浓度为05mg100ml,当磷浓度大于10mg100ml时产酶被完全阻遏。  相似文献   

7.
泡盛曲霉植酸酶的酶学性质研究   总被引:1,自引:0,他引:1  
泡盛曲霉植酸酶作为动物饲料添加剂具有广泛的应用前景。以半固体发酵方式培养泡盛曲霉AS3.324(Aspergillus awamori),并得到纯化的植酸酶。对其酶学性质研究表明:其反应最适温度为50~55℃,最适pH为5.5,在37℃下以植酸钠为底物的Km值为1.05nmol/L,Vmax为2.16μmol/(L.min)。EDTA基本不影响植酸酶活性;Ca2 、Mg2 、Mn2 对植酸酶活性有轻微的抑制作用;Fe2 、Zn2 对酶促反应有显著的抑制作用。对该酶的耐热性研究表明,在较高温度条件处理后,仍有较高残余酶活性,与当今商品化的植酸酶相比,有较强的耐热性。  相似文献   

8.
无花果曲霉是一种可以产植酸酶的菌株,其代谢产物植酸酶可以将有机植酸磷降解为无机磷。以此菌株为出发菌株,确定了它的最适pH值为1.3~1.4,最适温度为55~60℃。同时,为获得高酶活的突变株,进行亚硝基胍和紫外线处理,经初筛得到99株高效突变株,再经复筛和传代试验,得到1株植酸酶活性是出发菌株2.47倍的突变株NTG-23。  相似文献   

9.
植酸酶产生菌的选育及固态产酶条件研究   总被引:11,自引:0,他引:11  
植酸酶催化植酸,并将其盐类水解成肌醇和磷酸,因此植酸酶的使用可以提高植酸磷的吸收利用率,降低饲料成本,同时还可保护生态环境.经分离和亚硝基胍诱变选育,得到一株植酸酶高产菌株绿色木霉LH374,并对该菌株固态发酵产植酸酶的条件和扩大生产进行了研究.结果表明,固态发酵的最佳条件:稻草和米糠的比例为8∶2,培养基起始pH为6.5,最适温度为30℃,最适培养时间为96 h,含水量为60%,硫酸铵的流加量为2%.绿色木霉LH374在上述最适条件下生产植酸酶平均可达1 580 U·g-1.  相似文献   

10.
从蜂房哈夫尼菌(Hafniaalvei)中克隆获得一个植酸酶编码基因appA,该基因全长1335bp,编码444个氨基酸,其中前33个氨基酸为信号肽,成熟蛋白的理论分子量为45.2kD。将基因appA克隆到大肠杆菌E.coli表达载体pET-22b( ),并在大肠杆菌中表达,表达产物具有植酸酶活性。对表达的酶蛋白进行纯化,并初步研究了该酶的酶学性质,结果表明:酶的作用最适pH值为4.5;在pH2.0~10.0范围内,酶活性保留80%以上;酶的作用最适温度为60℃;酶的比活性为356.7U/mg,酶动力学分析表明其Km为0.49mmol/L,Vmax为238U/mg;该酶对胰蛋白酶和胃蛋白酶有一定的抗性。该研究为哈夫尼菌属来源植酸酶的首次报道。  相似文献   

11.
Naturally-occurring phytases having the required level of thermostability for application in animal feeding have not been found in nature thus far. We decided to de novo construct consensus phytases using primary protein sequence comparisons. A consensus enzyme based on 13 fungal phytase sequences had normal catalytic properties, but showed an unexpected 15-22 degrees C increase in unfolding temperature compared with each of its parents. As a first step towards understanding the molecular basis of increased heat resistance, the crystal structure of consensus phytase was determined and compared with that of Aspergillus niger phytase. Aspergillus niger phytase unfolds at much lower temperatures. In most cases, consensus residues were indeed expected, based on comparisons of both three-dimensional structures, to contribute more to phytase stabilization than non-consensus amino acids. For some consensus amino acids, predicted by structural comparisons to destabilize the protein, mutational analysis was performed. Interestingly, these consensus residues in fact increased the unfolding temperature of the consensus phytase. In summary, for fungal phytases apparently an unexpected direct link between protein sequence conservation and protein stability exists.  相似文献   

12.
A novel phytase with preferable characteristics from Yersinia intermedia   总被引:3,自引:0,他引:3  
A Yersinia intermedia strain producing phytase was isolated from glacier soil. The phytase gene, appA, was isolated by degenerate PCR and TAIL-PCR. The full-length fragment contained 2354bp with a 1326-bp open reading frame encoding 441 amino acids. APPA contained the active site RHGXRXP and HD sequence motifs that are typical of histidine acid phosphatases. To our knowledge, this is the first report of the detection of phytase activity and cloning of the relevant gene from Y. intermedia. The gene was overexpressed in Pichia pastoris, and the purified recombinant APPA had a specific activity for sodium phytate of 3960U/mg, which is higher than that of the Citrobacter braakii phytase (previously the highest specific activity known). Recombinant APPA had high activity from pH 2 to 6 (optimum 4.5) and optimal temperature of 55 degrees C; the enzyme was resistant to pepsin and trypsin. These characteristics suggest that APPA may be highly suitable for use in the feed industry.  相似文献   

13.
植酸酶phyAm基因结构延伸突变改善酶的热稳定性   总被引:9,自引:0,他引:9  
将来源于黑曲霉N25的植酸酶基因phyA^m重组于大肠杆菌表达载体pET-30b(+),以重组表达载体pET30b-FphyA^e为模板经PCR扩增获得结构延伸突变植酸酶基因phyA^m(在植酸酶基因C端增加了来源于pET-30b-FphyA^m载体上13氨基酸残基)。含突变基因的重组表达载体pPIC9k-phyA^e在GS115酵母中表达。纯化的突变酶pp-NP^e与野生型酶PP-NP^m-8相比:PP-NPA^e的最适反应温度上升了3气,75℃处理10min,热稳定性提高21%,比活力略有提高。最适反应pH为5.6,有效pH范围pH4,6到pH6.6。比未突变酶扩大了0.4单位。  相似文献   

14.
The inclusion of phytase in monogastric animal feed has the benefit of hydrolyzing indigestible plant phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) to provide poultry and swine with dietary phosphorus. An ideal phytase supplement should have a high temperature tolerance, allowing it to survive the feed pelleting process, a high specific activity at low pHs, and adequate gastric performance. For this study, the performance of a bacterial phytase was optimized by the use of gene site saturation mutagenesis technology. Beginning with the appA gene from Escherichia coli, a library of clones incorporating all 19 possible amino acid changes and 32 possible codon variations in 431 residues of the sequence was generated and screened for mutants exhibiting improved thermal tolerance. Fourteen single site variants were discovered that retained as much as 10 times the residual activity of the wild-type enzyme after a heated incubation regimen. The addition of eight individual mutations into a single construct (Phy9X) resulted in a protein of maximal fitness, i.e., a highly active phytase with no loss of activity after heating at 62 degrees C for 1 h and 27% of its initial activity after 10 min at 85 degrees C, which was a significant improvement over the appA parental phytase. Phy9X also showed a 3.5-fold enhancement in gastric stability.  相似文献   

15.
Previously, we calculated a consensus amino acid sequence from 13 homologous fungal phytases. A synthetic gene was constructed and recombinantly expressed. Surprisingly, consensus phytase-1 was 15-26 degrees C more thermostable than all parent phytases used in its design [Lehmann et al. (2000)Protein Eng., 13, 49-57]. In the present study, inclusion of six further phytase sequences in the amino acid sequence alignment resulted in the replacement of 38 amino acid residues in either one or both of the new consensus phytases-10 and -11. Since consensus phytase-10, again, was 7.4 degrees C more thermostable than consensus phytase-1, the thermostability effects of most of the 38 amino acid substitutions were tested by site-directed mutagenesis. Both stabilizing and destabilizing mutations were identified, but all affected the stability of the enzyme by <3 degrees C. The combination of all stabilizing amino acid exchanges in a multiple mutant of consensus phytase-1 increased the unfolding temperature from 78.0 to 88.5 degrees C. Likewise, back-mutation of four destabilizing amino acids and introduction of an additional stabilizing amino acid in consensus phytase-10 further increased the unfolding temperature from 85.4 to 90.4 degrees C. The thermostabilization achieved is the result of a combination of slight improvements from multiple amino acid exchanges rather than being the effect of a single or of just a few dominating mutations that have been introduced by chance. The present findings support the general validity of the consensus concept for thermostability engineering of proteins.  相似文献   

16.
The consensus concept for thermostability engineering of proteins   总被引:16,自引:0,他引:16  
Previously, sequence comparisons between a mesophilic enzyme and a more thermostable homologue were shown to be a feasible approach to successfully predict thermostabilizing amino acid substitutions. The 'consensus approach' described in the present paper shows that even a set of amino acid sequences of homologous, mesophilic enzymes contains sufficient information to allow rapid design of a thermostabilized, fully functional variant of this family of enzymes. A sequence alignment of homologous fungal phytases was used to calculate a consensus phytase amino acid sequence. Upon construction of the synthetic gene, recombinant expression and purification, the first phytase obtained, termed consensus phytase-1, displayed an unfolding temperature (T(m)) of 78.0 degrees C which is 15-22 degrees C higher than the T(m) values of all parent phytases used in its design. Refinement of the approach, combined with site-directed mutagenesis experiments, yielded optimized consensus phytases with T(m) values of up to 90.4 degrees C. These increases in T(m) are due to the combination of multiple amino acid exchanges which are distributed over the entire sequence of the protein and mainly affect surface-exposed residues; each individual substitution has a rather small thermostabilizing effect only. Remarkably, in spite of the pronounced increase in thermostability, catalytic activity at 37 degrees C is not compromised. Thus, the design of consensus proteins is a potentially powerful and novel alternative to directed evolution and to a series of rational approaches for thermostability engineering of enzymes and other proteins.  相似文献   

17.
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).  相似文献   

18.
Enterocin P is a new bacteriocin produced by Enterococcus faecium P13 isolated from a Spanish dry-fermented sausage. Enterocin P inhibited most of tested spoilage and food-borne gram-positive pathogenic bacteria, such as Listeria monocytogenes, Staphylococcus aureus, Clostridium perfringens, and Clostridium botulinum. Enterocin P is produced during growth in MRS broth from 16 to 45 degrees C; it is heat resistant (60 min at 100 degrees C; 15 min at 121 degrees C) and can withstand exposure to pH between 2.0 and 11.0, freeze-thawing, lyophilization, and long-term storage at 4 and -20 degrees C. The bacteriocin was purified to homogeneity by ammonium sulfate precipitation, gel filtration, cation-exchange, hydrophobic-interaction, and reverse-phase liquid chromatography. The sequence of 43 amino acids of the N terminus was obtained by Edman degradation. DNA sequencing analysis of a 755-bp region revealed the presence of two consecutive open reading frames (ORFs). The first ORF encodes a 71-amino-acid protein containing a hydrophobic N-terminal sec-dependent leader sequence of 27 amino acids followed by the amino acid sequence corresponding to the purified and sequenced enterocin P. The bacteriocin is apparently synthesized as a prepeptide that is cleaved immediately after the Val-Asp-Ala residues (positions -3 to -1), resulting in the mature bacteriocin consisting of 44 amino acids, and with a theoretical molecular weight of 4,493. A second ORF, encoding a putative immunity protein composed of 88 amino acids with a calculated molecular weight of 9,886, was found immediately downstream of the enterocin P structural gene. Enterocin P shows a strong antilisterial activity and has the consensus sequence found in the pediocin-like bacteriocins; however, enterocin P is processed and secreted by the sec-dependent pathway.  相似文献   

19.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号