首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
四种温带森林土壤氧化亚氮通量及其影响因子   总被引:9,自引:0,他引:9  
以中国东北东部4种典型森林生态系统(人工红松林、落叶松林、天然次生蒙古栎林和硬阔叶林)为研究对象,采用静态暗箱-气相色谱法,比较其土壤N2O通量的季节动态及其影响因子.结果表明:在生长季, 4种森林生态系统土壤总体上表现为大气N2O的排放源, 其N2O通量大小顺序为:硬阔叶林(21.0±4.9 μg·m-2·h-1)> 红松林(17.6±4.6 μg·m-2·h-1)>落叶松林(9.8±5.9 μg·m-2·h-1)>蒙古栎林(1.6±12.6 μg·m-2·h-1).各生态系统的N2O通量没有明显的季节动态,只在夏初出现排放峰值(蒙古栎林为吸收峰).4种生态系统N2O通量均与10 cm深土壤含水量呈极显著正相关,与NO3--N呈显著负相关;N2O通量对土壤温度和NH4+-N的响应出现分异:针叶林N2O 通量与NH4+-N呈显著正相关,而与5 cm深土壤温度呈不相关;阔叶林与针叶林正相反.在较为干旱的2007年,土壤水分是影响4种林型土壤N2O通量的关键因子.植被类型与环境因子及氮素有效性对N2O通量的相互作用将是未来研究的重点.  相似文献   

2.
成都平原水稻-油菜轮作系统氧化亚氮排放   总被引:16,自引:0,他引:16  
2005年6月—2006年6月利用静态箱/气相色谱法对成都平原水稻 油菜轮作系统氧化亚氮(N2O)排放进行定位观测, 研究了该系统N2O排放特征及土壤水热状况、氮肥施用、作物参与对N2O排放的影响. 结果表明: 成都平原水稻-油菜轮作系统N2O排放总量为(8.3±2.8)kg·hm-2·a-1, 水稻季、油菜季和休闲期对整个轮作周期N2O排放总量的贡献分别为30%、65%和5%. 水稻季N2O平均排放速率表现为排灌交替期最大, 持续淹水期和排水晒田期相当;氮肥施用是N2O排放高峰出现的主要驱动力;土壤表层含水量偏低是旱季出现土壤N2O吸收现象的主要原因. 土壤水分、土壤温度、施用氮肥和作物参与均在不同程度上影响N2O排放, 土壤水分是影响N2O排放的关键因子, 避免水稻季土壤频繁干湿交替或控制旱季土壤水分(表层土壤含水孔隙率介于50%~70%)可有效抑制N2O排放.  相似文献   

3.
丁爽  王传宽 《应用生态学报》2009,20(9):2072-2078
以移栽自兴安落叶松林自然分布区内4个纬度梯度(塔河、松岭、孙吴和带岭)的8年生兴安落叶松林为对象,于移栽3年后(2007年)的春季土壤解冻期,采用氯仿熏蒸浸提法测定了4个纬度梯度(处理)土壤的微生物生物量碳(Cmic)和微生物生物量氮(Nmic)的时间动态.结果表明:在相似基质和相同气候条件下,移栽自4个纬度梯度的兴安落叶松林春季土壤解冻期的Cmic和Nmic平均值差异显著,呈随纬度升高而减少、随土层加深而下降的分布格局.其中塔河、松岭、孙吴和带岭的Cmic平均为554.63、826.41、874.81和1246.18 mg·kg-1,而Nmic分别为70.63、96.78、79.76 和119.66mg·kg-1.Cmic和Nmic在解冻前达到最大值;解冻初期迅速下降;在冻融交替阶段变化不显著,且维持在较低水平;在解冻末期,来自低纬度的带岭和孙吴的Cmic回升较快. 春季冻融期土壤温度和含水量对Cmic和Nmic的影响显著,其影响程度随冻融阶段而变化.土壤微生物生物量与解冻前的土壤温度呈负相关,与整个解冻期间的土壤含水量呈指数关系.  相似文献   

4.
百菌清对土壤氧化亚氮和二氧化碳排放的影响   总被引:1,自引:0,他引:1  
郎漫  蔡祖聪 《应用生态学报》2008,19(12):2745-2750
在25 ℃、60%WHC(最大持水量)的好氧条件下进行14 d的培养试验,研究杀菌剂百菌清在添加水平为0 mg·kg-1(CK)、5.5 mg·kg-1(田间施用量,FR)及110 mg·kg-1(20FR)和220 mg·kg-1(40FR)时对酸性、中性和碱性土壤中N2O和CO2排放的影响.结果表明:百菌清对N2O和CO2排放的影响取决于土壤类型和施用浓度.与对照相比,百菌清在20FR和40FR时显著抑制了酸性土壤N2O的产生与排放;3种施用量均显著促进了中性土壤N2O的排放,其中FR水平的促进效果最显著;高浓度(20FR和40FR)的百菌清在培养初期抑制了碱性土壤N2O的排放,而在培养后期显著促进了N2O的排放.田间用量的百菌清对土壤CO2排放量没有明显影响;高浓度(20FR和40FR)时显著促进了酸性土壤CO2的排放,显著抑制了中性和碱性土壤CO2的排放.  相似文献   

5.
为了揭示兴安落叶松针叶光合作用对环境变化响应的分子机制,采用高通量测序技术,对生长环境差异明显的4个样地[塔河(52°52′ N)、松岭(50°72′ N)、黑河(49°22′ N)和带岭(47°08′ N)]兴安落叶松针叶进行转录组测序,并比对不同样地树木针叶的差异表达基因(DEGs)。结果表明: 共获得高质量短读序282428811条,其中在塔河-松岭、塔河-黑河、塔河-带岭、松岭-黑河、松岭-带岭、黑河-带岭6个对比组中,分别筛选出16915、18812、28536、20635、29957和23617条差异表达基因。在KEGG代谢通路分析中,光合作用通路中编码光系统Ⅱ(PSⅡ)的Psb基因家族的9个基因(即PsbBPsbKPsbOPsbPPsbQPsbSPsbWPsb27和Psb28)及编码F型ATP酶的3个基因(即ATPF1A, atpAATPF1G, atpGATPF1D, atpH)均随样地间的环境差异增大而呈现明显上调;氮代谢通路中编码谷氨酰胺合成酶的基因(glnA, GLUL)、硝酸还原酶的基因(NR)、碳酸酐酶的基因(cynT,can)也呈现同样的上调。DEGs和上调基因的数量均随样地环境变化增大而增多,进而导致了兴安落叶松针叶光合能力在样地间的差异。  相似文献   

6.
两种配比的控释肥对杭白菊养分吸收和生长效应的影响   总被引:1,自引:1,他引:0  
利用盆栽试验研究两种不同配比的控释复合肥CRFA(4%树脂包膜,N∶P2O5∶K2O为14∶14∶14)和CRFB(4%树脂包膜,N∶P2O5∶K2O为20∶8∶10)及普通复合肥CCF(N∶P2O5∶K2O为15∶15∶15)对杭白菊营养吸收和生长效应的影响.结果表明:普通复合肥CCF1(每盆6 g氮素用量的CCF)和CCF2(每盆3 g氮素用量的CCF)施入土壤后30 d,土壤中碱解氮、有效磷、有效钾含量分别为163.29和145.26 mg·kg-1、180.39和163.13 mg·kg-1、300.08 和213.15 mg·kg-1,而后迅速下降.控释复合肥养分释放较慢,其土壤碱解氮含量在施肥后缓慢升高,在施肥后60 d达到高峰,此时CRFA1(每盆6 g氮素用量的CRFA)、CRFB1(每盆6 g氮素用量的CRFB)、CRFA2(每盆3 g氮素用量的CRFA)、CRFB2(每盆3 g氮素用量的CRFB)分别为129.51、138.65、118.36、126.31 mg·kg-1;CRFA1和CRFA2处理土壤有效磷含量与CCF处理变化趋势基本一致,施肥后30 d分别达到169.54和133.46 mg·kg-1,CRFB1和CRFB2处理在施肥后60 d左右达到释放高峰,含量分别为137.13和84.68 mg·kg-1,然后缓慢下降.两种不同养分配比的控释复合肥处理植株叶面积、叶面积系数、分枝数、开花率、每株花数、鲜花直径等农艺性状均明显优于等氮素用量的普通复合肥处理,其中CRFB控释效果优于CRFA,其更符合杭白菊对养分的需求,且在本试验条件下,CRFB2处理产量最高.  相似文献   

7.
湿地植物小叶章对外源氮输入的响应   总被引:4,自引:0,他引:4  
刘德燕  宋长春 《应用生态学报》2008,19(12):2599-2604
选取三江平原典型沼泽湿地植物小叶章为对象,通过野外控制试验(2004—2007年),研究了4个不同氮素输入水平[0(对照,CK)、6(N6)、12(N12)和24(N24) g·m-2·a-1]对小叶章叶片形态、叶绿素和生物量累积等的影响.结果表明:不同氮处理间小叶章叶长和叶宽未出现显著差异,比叶面积在N12处理时最小[(149.54±18.27) cm2·g-1],即此氮处理水平下叶片的厚度最大.叶片的叶绿素含量均呈单峰型变化,峰前,随着氮输入量的增大而增大,且N12和N24处理下峰值出现的时间早于N6和CK处理;峰后,N24处理下叶绿素含量迅速降低,N6处理则降低缓慢,说明适量的氮输入延缓了叶片衰老.连续的高氮(N24)输入使小叶章的生长发育有所提前,在成熟后叶片出现早衰现象.2005和2007年生长季末,小叶章地上部分生物量均随着外源氮输入量的增加而增大,但是经过4年 (2007年) 连续高氮(N24)处理的小叶章地上部分生物量较输入2年 (2005年) 时降低了53.72%.  相似文献   

8.
利用2002—2003年长江口近海(122°00′—123°30′ E,29°00′—32°00′ N)四季调查资料,研究了长江口近海浮游糠虾类多样性、数量波动过程及其与渔场的关系.结果表明:长江口近海共有浮游糠虾14种,秋季10种,春、秋季8种,冬季2种.种类组成季节更替明显,其中从秋季到冬季更替率最高(90.9%),春、夏和秋季多样性指数(H′)值均大于2,冬季为1- 夏季丰度均值最高[234.70 ind·(100 m3)-1],秋季为103.34 ind·(100 m3)-1,春季80.36 ind·(100 m3)-1,冬季最低12.40 ind·(100 m3)-1,丰度变化与温度一致.因温、盐适应范围最广,漂浮囊糠虾是春、秋、冬3季的优势种;短额刺糠虾是夏、秋两季的优势种;长额刺糠虾是冬季的优势种各季节优势种对总丰度贡献均较大.夏季短额刺糠虾的聚集强度最高.长江口近海浮游糠虾类对长江口渔场及舟山渔场的形成具有重要意义.  相似文献   

9.
基于在我国开展的66个野外氮沉降模拟试验的290组数据,采用整合分析方法,探究实验样地特征(气候因子、土壤性质)和施氮因素对施氮后土壤N2O通量变化的影响。结果表明:样地的年均降水量、年均温、自然氮沉降量和土壤C/N与施氮后N2O通量增幅呈显著正相关,土壤pH与施氮后N2O通量增幅呈显著负相关。湿地生态系统土壤对施氮最敏感,森林生态系统次之,草原生态系统最小。所有的样地因子中,土壤pH和C/N对施氮后N2O通量变化幅度的影响最大。施加硝态氮后土壤N2O通量增幅最大,施加尿素与铵态氮后N2O通量增幅相当,而施加硝酸铵后N2O通量增幅最小。综上,在准确评估和预测土壤N2O通量对氮沉降的响应时,应综合考虑样地特征及氮源种类的影响。  相似文献   

10.
森林和沼泽对溪流水化学特征的影响   总被引:6,自引:0,他引:6  
以小兴安岭北部公别拉河上游为研究区,于2004年7~9月对森林溪流和沼泽溪流水样进行水化学特征对比分析.结果表明,森林和沼泽溪流水化学类型均为重碳酸盐类钙组Ⅰ型水(CCa).森林溪流水的pH、矿化度、总硬度、HCO3-、SO42-、Ca2+、Mg2+、Fe均低于沼泽溪流,而总氮、总磷、Cl-、K+、Na+则高于沼泽溪流.森林溪流和沼泽溪流中重金属元素Fe、Mn、Cu、Zn、Cd、Hg和Pb含量较低,均未超过我国Ⅰ类地表水环境质量标准.森林溪流中总氮含量为(0.27±0.04) mg·L-1、总磷含量为(0.040±0.005) mg·L-1,明显高于沼泽溪流中总氮含量((0.21±0.02) mg·L-1)和总磷含量((0.025±0.004) mg·L-1),沼泽湿地对N、P有较强的储存和吸附能力,且对NH4+-N的吸附作用远大于对NO3--N的吸附.沼泽溪流中Fe含量为(0.26±0.05) mg·L-1,显著高于森林溪流Fe含量,沼泽湿地对Fe起到还原释放作用.  相似文献   

11.
寒温带兴安落叶松林土壤温室气体通量的时间变异   总被引:2,自引:0,他引:2  
采用静态箱/气相色谱(GC)法,对寒温带兴安落叶松林区6-9月生长季土壤CO2、CH4和N2O通量进行原位测定,研究了土壤温室气体通量的季节和昼夜变化及其与环境因子的关系.结果表明:在生长季,兴安落叶松林土壤为大气CH4的汇,吸收通量为22.3~107.8 μg CH4-C·m-2·h-1,6-9月月均甲烷吸收通量为(34.0±7.1)、(71.4±9.4)、(86.3±7.9)和(40.7-±6.2) μg·m-2·h-1;不同季节土壤CH4昼夜通量的变化规律相同,一天中均在10:00达到最大吸收高峰.土壤CO2日通量呈明显的双峰曲线,月均CO2通量大小顺序为7月>8月>6月>9月.土壤N2O通量变异较大,在-9.1 ~31.7μg·m-2·h-1之间.土壤温度和湿度是影响CO2和CH4通量的重要因子,N2O通量主要受温度的影响.在兴安落叶松林区,10:00左右观测获得的温室气体地-气交换通量,经矫正后可以代表当日气体通量.  相似文献   

12.
全球森林土壤N2O排放通量的影响因子   总被引:1,自引:0,他引:1  
韩琳  王鸽  王伟  赵熙 《生态学杂志》2012,31(2):446-452
森林生态系统在全球变暖格局下的地位和作用,尤其是土壤氮库对大气氮沉降增加的响应逐渐成为全球变化研究的热点。本文通过对已有文献资料的调研和整理,分析了1984—2009年间全球38个森林土壤N2O排放通量的野外原位观测结果的分布特征,评估了森林土壤N2O年排放累积通量对大气氮素沉降量和水热条件等因子变化的响应。结果表明,全球森林土壤N2O排放通量的平均值为0.47kgN·hm-2·a-1,而且土壤N2O释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤N2O累积释放量同样受到年均温、年降水量以及土壤属性的显著影响。其中全球森林土壤N2O释放温度敏感性系数(Q10值)约为1.5。另外,森林土壤N2O排放通量也随着氮沉降量的增加而显著增大,大气氮沉降量可解释土壤N2O排放通量在不同区域之间53%的差异;土壤pH、年均温和大气氮沉降量可以解释区域森林土壤N2O排放通量变化的55%。  相似文献   

13.
Air temperature freeze–thaw cycles often occur during the early spring period directly after snowmelt and before budbreak in low arctic tundra. This early spring period may be associated with nitrogen (N) and carbon (C) loss from soils as leachate or as trace gases, due to the detrimental impact of soil freeze–thaw cycles and a developing active layer on soil microorganisms. We measured soil and microbial pools of C and N in early spring during a period of fluctuating air temperature (ranging from ?4 to +10°C) and in midsummer, in low arctic birch hummock tundra. In addition we measured N2O, CH4 and CO2 production in the early spring. All of these biogeochemical variables were also measured in long-term snowfence (deepened snow) and N-addition plots to characterize climate-change related controls on these variables. Microbial and soil solution pools of C and N, and trace gas production varied among the five early spring sample dates, but only marginally and no more than among sample dates in midsummer. N-addition greatly elevated N2O fluxes, indicating that although denitrifiers were present their activity during early spring was strongly limited by N-availability, but otherwise trace gas production was very low in early spring. The later thaw, warmer winter and colder spring soil temperatures resulting from deepened snow did not significantly alter N pools or rates in early spring. Together, our results indicate strong stability in microbial and soil solution C and N pool sizes in the early spring period just after snowmelt when soil temperatures are close to 0°C (?1.5 to +5°C). A review of annual temperature records from this and other sites suggests that soil freeze–thaw cycles are probably infrequent in mesic tundra in early spring. We suggest that future studies concerned with temperature controls on soil and microbial biogeochemistry should focus not on soil freeze–thaw cycles per se, but on the rapid and often stepped increases in soil temperature that occur under the thawing snowpack.  相似文献   

14.
紫色土菜地生态系统土壤N2O排放及其主要影响因素   总被引:3,自引:0,他引:3  
于亚军  王小国  朱波 《生态学报》2012,32(6):1830-1838
应用静态箱/气相色谱法对种菜历史超过20a的紫色土菜地进行了一年N2O排放的定位观测, 分析了菜地N2O排放特征及施氮、土壤温度、土壤湿度和蔬菜参与对N2O排放的影响. 结果表明, 紫色土菜地生态系统在不施氮和施氮(N150kg?hm-2)情况下N2O平均排放通量为50.713.3和168.437.3g?m-2?h-1, N2O排放系数为1.86%. 菜地生态系统N2O排放强度高于当地粮食作物农田,其主要原因在于菜地较高的养分水平和频繁的施肥、浇水等田间管理措施. 从菜地N2O排放总量的季节分配来看, 有64%的N2O排放量来自于土壤水热条件较好的夏秋季蔬菜生长期, 冬春季蔬菜生长期N2O排放量较少, 仅占34%. 因此, 土壤水热条件不同是造成菜地N2O排放量季节分配差异的重要原因. 氮肥对增加N2O排放的效应因蔬菜生育期内单位时间施肥强度不同而异, 蔬菜生育期越短, 施氮对增加N2O排放的效应越明显.不施氮和常规施氮菜地N2O排放通量与地下5cm处土壤温度呈显著的正相关, 但不种蔬菜的空地两者之间的关系不显著, 并且常规施氮菜地土壤温度(T)对N2O排放通量(F)的影响可用指数方程F=11.465e0.032T(R=0.26, p<0.01)表示. 土壤湿度对菜地N2O排放的影响存在阈值效应, 当土壤含水空隙率(WFPS)介于60%-75%时更易引发N2O高排放. 因此, 依据蔬菜生育期特点, 结合土壤水分状况调节施肥量与施肥时间可能会减少菜地N2O排放.  相似文献   

15.
In mountain regions of Central Europe an increase of soil frost periods is predicted for this century due to reduced snow fall. To investigate the effects of freezing and thawing on soil N2O fluxes in a mature Norway spruce forest in the mountainous Fichtelgebirge, Germany, the natural snow cover on three experimental plots was removed to induce soil frost. Three plots with natural snow cover served as controls. Soil N2O fluxes were recorded in biweekly to monthly intervals during the frost and subsequent thawing period of the below-average cold winter in 2005/2006 and in the above-average warm winter in 2006/2007. In addition, N2O concentrations and isotope signatures in soil air were measured along soil profiles in six different depths (from 6 to 70 cm). The soil of the snow removal plots was frozen down to 15 cm depth from January to April 2006 while the soil of control plots remained unfrozen under snow cover. Both soil freezing and thawing resulted in almost tenfold enhanced N2O fluxes on snow removal plots contributing 84% to annual N2O emissions. In the subsequent winter without soil frost no effects were observed. Vertical gradients of N2O concentrations together with isotope abundance suggest that the subsoil of all plots was a probably weak, but continuous N2O source throughout the year. Isotope signatures and N2O concentration gradients in the soil profile indicate that microbial N2O production and reduction of N2O to N2 did not or just marginally occur in frozen soil layers of the snow removal plots. Consequently, elevated N2O fluxes in the late winter were attributed to the release of accumulated N2O originating from the subsoil. At unfrozen soil, however, N2O emissions were reduced due to a shift of the N2O production-consumption ratio towards more consumption in the topsoil of both the control and snow removal plots. These findings contradict the general assumption that N2O production in the organic layer is responsible for bursts of N2O due to soil frost.  相似文献   

16.
采用野外原位实验静态箱-气相色谱法,研究了兴安岭多年冻土不同程度退化地区生长季湿地土壤温室气体CH4、CO2和N2O的排放通量特征,同时分析了环境因子对土壤温室气体排放的影响。结果表明:1)3种类型冻土区(季节性冻土区、岛状多年冻土区、连续多年冻土区,分别用D1、D2、D3表示)土壤在生长季时期表现为CO2和N2O的源;D1和D3为CH4的源,D2为CH4的汇。D1、D2、D3土壤在生长季中平均CH4排放通量分别为(0.127±0.021)、(-0.020±0.006)、(0.082±0.019)mg·m^-2·h^-1;CO2排放通量分别为(371.50±66.73)、(318.43±55.67)、(213.19±37.05)mg·m^-2·h^-1;N2O排放通量分别为(24.05±2.62)、(8.07±2.42)、(2.17±0.25)μg·m-2·h-1。土壤CO2和N2O排放通量随多年冻土退化程度的加剧呈现出升高的趋势。2)细根生物量、凋落物生物量、全碳、全氮、可溶性有机碳、总可溶性氮、土壤容重、土壤温度、土壤含水量等均影响温室气体排放,3种不同类型冻土区土壤CH4、CO2和N2O的排放差异是诸多影响因子综合作用的结果。  相似文献   

17.
三江平原春小麦农田生态系统氧化亚氮通量特征   总被引:4,自引:0,他引:4  
利用静态暗箱-气相色谱法对三江平原春小麦农田生态系统N2O排放通量进行连续2.5年的田间原位观测.结果表明:三江平原春小麦农田生态系统N2O排放通量具有较明显的季节变化和年际变化,并主要与年际间降水及田间水分管理差异有关;春小麦农田生态系统N2O排放日变化与气温及地下5 cm温度变化有关.生长期N2O的排放较强,休耕期N2O排放量显著下降,冰冻期N2O的排放较微弱,融冻时N2O排放缓慢增强.生长期N2O平均排放通量为0.190 mg.m-2.h-1,收割后到冰冻期间为0.077 mg.m-2.h-1,冻融期间为0.017 mg.m-2.h-1.  相似文献   

18.
不同耕作措施的温室气体排放日变化及最佳观测时间   总被引:10,自引:0,他引:10  
在连续6 a耕作模式的基础上,利用静态箱-气相色谱法对常规耕作与免耕条件下小麦生育后期麦田CO2、CH4、N2O通量日变化进行了连续48 h观测,并确定1 d中最佳的观测时间。结果表明,常规耕作与免耕条件下小麦生育后期麦田CO2、CH4、N2O通量具有显著的日变化特征,常规耕作处理和免耕处理土壤表现为CH4的吸收汇、CO2、N2O的排放源。CH4日均吸收通量:常规耕作无秸秆还田处理(AC)>常规耕作秸秆还田处理(PC)>免耕(PZ);CO2日均排放通量:常规耕作秸秆还田处理(PC)>常规耕作无秸秆还田处理(AC)>免耕(PZ);N2O日均排放通量:常规耕作秸秆还田处理(PC)>常规耕作无秸秆还田处理(AC)>免耕(PZ)。相关性分析表明,常规耕作及免耕条件下CO2、CH4、N2O通量日变化与地表温度和5 cm地温呈极显著(P<0.01)或显著(P<0.05)的正相关关系,温度是决定温室气体日变化的主要决定因素。通过矫正系数和回归分析表明,在小麦生育后期(4—6月),CO2的最佳观测时间段在8:00—10:00,CH4为8:00—10:00,N2O为8:00—12:00。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号