首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Natriuretic peptide receptor A (NPR-A) is an essential cardiovascular regulator that is stimulated by atrial natriuretic peptide and B-type natriuretic peptide, whereas natriuretic peptide receptor B (NPR-B) stimulates long bone growth in a C-type natriuretic peptide-dependent manner. Many reports indicate that ATP is essential for NPR-A and NPR-B activation. Current models suggest that natriuretic peptide binding to receptor extracellular domains causes ATP binding to intracellular kinase homology domains, which derepresses adjacent catalytic domains. Here, we report 100-fold activations of natriuretic peptide receptors in the absence of ATP. The addition of a nonhydrolyzable ATP analog had no effect at early time periods (measured in seconds) but increased cGMP production about 2-fold after longer incubations (measured in minutes), consistent with a stabilization, not activation, mechanism. These data indicate that ATP does not activate natriuretic peptide receptors as has been repeatedly reported. Instead, ATP increases activity primarily by maintaining proper receptor phosphorylation status but also serves a previously unappreciated enzyme stabilizing function.  相似文献   

2.
Potthast R  Potter LR 《Peptides》2005,26(6):1001-1008
Natriuretic peptides are a family of hormones/paracrine factors that regulate blood pressure, cardiovascular homeostasis and bone growth. The mammalian family consists of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). A family of three cell surface receptors mediates their physiologic effects. Two are receptor guanylyl cyclases known as NPR-A/GC-A and NPR-B/GC-B. Peptide binding to these enzymes stimulates the synthesis of the intracellular second messenger, cGMP, whereas a third receptor, NPR-C, lacks enzymatic activity and functions primarily as a clearance receptor. Here, we provide a brief review of how various desensitizing agents and/or conditions inhibit NPR-A and NPR-B by decreasing their phosphorylation state.  相似文献   

3.
Cardiac hormone atrial natriuretic peptide (ANP) and its receptor natriuretic peptide receptor-A (NPR-A) system acts as an intrinsic negative regulator of abnormal extracellular matrix (ECM) remodeling in the heart. However, the underlying mechanism by which ANP/NPR-A system opposes the ECM remodeling in the diseased heart is not well understood. Here, we investigated the anti-fibrotic mechanism of ANP/NPR-A in fibrotic agonist Angiotensin- II (ANG II)-treated adult cardiac fibroblast (CF) cells. Normal and NPR-A-suppressed adult CF cells were treated with ANG II (10?7 M) in the presence and absence of ANP (10?8 M) for 24 h. Total collagen concentration, activity and expression of MMP-2 and MMP-9, and nuclear translocation of Nuclear factor-kappaB (NF-κB-p50) were studied. NPR-A-suppressed adult CF cells exhibited a more pronounced increase in collagen production, ROS generation, and NF-κB-p50 nuclear translocation as compared to adult CF cells treated with agonist alone. ANP co-treatment significantly reverses the agonist-induced above changes in normal adult CF cells, while it failed to reverse the agonist-induced collagen synthesis in the NPR-A-suppressed adult CF cells. The cGMP analog (8-bromo-cGMP) treatment significantly attenuated the agonist-induced collagen synthesis both in normal and NPR-A-suppressed adult cells. The results of this study suggest that ANP/NPR-A signaling system antagonizes the agonist-induced collagen synthesis via suppressing the activities of MMP-2, MMP-9, ROS generation, and NF-κB nuclear translocation mechanism.  相似文献   

4.
Guanylyl cyclases (GC) exist as soluble and particulate, membrane-associated enzymes which catalyse the conversion of GTP to cGMP, an intracellular signalling molecule. Several membrane forms of the enzyme have been identified up to now. Some of them serve as receptors for the natriuretic peptides, a family of peptides which includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), three peptides known to play important roles in renal and cardiovascular physiology. These are transmembrane proteins composed of a single transmembrane domain, a variable extracellular natriuretic peptide-binding domain, and a more conserved intracellular kinase homology domain (KHD) and catalytic domain. GC-A, the receptor for ANP and BNP, also named natriuretic peptide receptor-A or -1 (NPR-A or NPR-1), has been studied widely. Its mode of activation by peptide ligands and mechanisms of regulation serve as prototypes for understanding the function of other particulate GC. Activation of this enzyme by its ligand is a complex process requiring oligomerization, ligand binding, KHD phosphorylation and ATP binding. Gene knockout and genetic segregation studies have provided strong evidence for the importance of GC-A in the regulation of blood pressure and heart and renal functions. GC-B is the main receptor for CNP, the latter having a more paracrine role at the vascular and venous levels. The structure and regulation of GC-B is similar to that of GC-A. This chapter reviews the structure and roles of GC-A and GC-B in blood pressure regulation and cardiac and renal pathophysiology.  相似文献   

5.
The binding of atrial natriuretic peptide and C-type natriuretic peptide (CNP) to the guanylyl cyclase-linked natriuretic peptide receptors A and B (NPR-A and -B), respectively, stimulates increases in intracellular cGMP concentrations. The vasoactive peptides vasopressin, angiotensin II, and endothelin inhibit natriuretic peptide-dependent cGMP elevations by activating protein kinase C (PKC). Recently, we identified six in vivo phosphorylation sites for NPR-A and five sites for NPR-B and demonstrated that the phosphorylation of these sites is required for ligand-dependent receptor activation. Here, we show that phorbol 12-myristate 13-acetate, a direct activator of PKC, causes the dephosphorylation and desensitization of NPR-B. In contrast to the CNP-dependent desensitization process, which results in coordinate dephosphorylation of all five sites in the receptor, phorbol 12-myristate 13-acetate treatment causes the dephosphorylation of only one site, which we have identified as Ser(523). The conversion of this residue to alanine or glutamate did not reduce the amount of mature receptor protein as indicated by detergent-dependent guanylyl cyclase activities or Western blot analysis but completely blocked the ability of PKC to induce the dephosphorylation and desensitization of NPR-B. Thus, in contrast to previous reports suggesting that PKC directly phosphorylates and inhibits guanylyl cyclase-linked natriuretic peptide receptors, we show that PKC-dependent dephosphorylation of NPR-B at Ser(523) provides a possible molecular explanation for how pressor hormones inhibit CNP signaling.  相似文献   

6.
Natriuretic peptide receptors mediate the physiological response of natriuretic peptide hormones. One of the natriuretic peptide receptor types is the particulate guanylyl cyclase receptors, of which there are two identified: NPR-A and NPR-B. In fishes, these have been sequenced and characterized in eels, medaka, and dogfish shark (NPR-B only). The euryhaline rainbow trout provides an opportunity to further pursue examination of the system in teleosts. In this study, partial rainbow trout NPR-A-like and NPR-B-like mRNA sequences were identified via PCR and cloning. The sequence information was used in real-time PCR to examine mRNA expression in a variety of tissues of freshwater rainbow trout and rainbow trout acclimated to 35 parts per thousand seawater for a period of 10 days. In the excretory kidney and posterior intestine, real-time PCR analysis showed greater expression of NPR-B in freshwater fish than in those adapted to seawater; otherwise, there was no difference in the expression of the individual receptors in fresh water or seawater. In general, the expression of the NPR-A and NPR-B type receptors was quite low. These findings indicate that NPR-A and NPR-B mRNA expression is minimally altered under the experimental regime used in this study.  相似文献   

7.
C-type natriuretic peptide and guanylyl cyclase B receptor   总被引:8,自引:0,他引:8  
Schulz S 《Peptides》2005,26(6):1024-1034
Guanylyl cyclases (GC) are widely distributed enzymes that signal via the production of the second messenger cGMP. The particulate guanylyl cyclases share a similar topology: an extracellular ligand binding domain and intracellular regulatory kinase-homology and cyclase catalytic domains. The natriuretic peptide receptors GC-A and -B mediate the effects of a family of peptides, atrial, B- and C-type natriuretic peptide (ANP, BNP and CNP, respectively), with natriuretic, diuretic and vasorelaxant properties. ANP and BNP, through the activation of GC-A, act as endocrine hormones to regulate blood pressure and volume, and inhibit cardiac hypertrophy. CNP, on the other hand, acts in an autocrine/paracrine fashion to induce vasorelaxation and vascular remodeling, and to regulate bone growth through its cognate receptor GC-B. GC-B, like GC-A, is phosphorylated in the basal state, and undergoes both homologous and heterologous desensitization, reflected by dephosphorylation of specific sites in the kinase-homology domain. This review will examine the structure and function of GC-B, and summarize the physiological processes in which this receptor is thought to participate.  相似文献   

8.
C-type natriuretic peptide (CNP) which potently stimulates particulate guanylate cyclase activity in cultured rat vascular smooth muscle cells (VSMC) inhibited serum-induced DNA synthesis of the cells 10-fold more effectively than alpha-human atrial natriuretic peptide (alpha-hANP). The inhibitory effect of CNP was mimicked by 8-bromo-cGMP. The proliferation of VSMC was also suppressed by CNP more potently than alpha-hANP, while the peptide was less active for cGMP augmentation and for vasorelaxation than alpha-hANP in isolated rat aorta. These results suggest that CNP may be a growth regulating factor of VSMC rather than a vasodilator.  相似文献   

9.
Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics.  相似文献   

10.
Piao FL  Park SH  Han JH  Cao C  Kim SZ  Kim SH 《Regulatory peptides》2004,118(3):193-198
Dendroaspis natriuretic peptide (DNP), a 38-amino acid peptide, was isolated from the venom of green mamba. It has structural and functional similarities to the other members of the natriuretic peptide family. The purpose of this study was to determine whether DNP is present in pig ovarian granulosa cells and to define its biological functions. The serial dilution curves of extracts of granulosa cells and follicular fluid were parallel to the standard curve of DNP, and a major peak of molecular profile of both extracts by HPLC was synthetic DNP. The concentration of DNP was 7.51+/-1.46 pg/10(7) cells and 24.81+/-2.38 pg/ml in granulosa cells and follicular fluid, respectively. Natriuretic peptides increased cGMP production in the purified membrane of granulosa cells with a rank order of potency of C-type natriuretic peptide (CNP)>atrial natriuretic peptide (ANP)=DNP. mRNAs for natriuretic peptide receptor-A (NPR-A), NPR-B and NPR-C were detected by RT-PCR. The binding site of (125)I-DNP was also observed in granulosa cell layer by in vitro autoradiography. Synthetic DNP inhibited the secretion of ANP from granulosa cells in a concentration-dependent manner and the potency was similar to CNP. The concentration of DNP and CNP, which inhibited the secretion of ANP by 50%, was about 1 nM. Increases in production of cGMP in granulosa cells were observed by DNP or CNP. Therefore, these results show the existence of DNP system and the cross-talk between natriuretic peptides in pig ovarian granulosa cells.  相似文献   

11.
The natriuretic peptide receptor-A (NPR-A) mediates natriuretic, hypotensive, and antihypertrophic effects of natriuretic peptides through the production of cGMP. In pathological conditions such as heart failure, these effects are attenuated by homologous and heterologous desensitization mechanisms resulting in the dephosphorylation of the cytosolic portion of the receptor. In contrast with natriuretic peptide-induced desensitization, pressor hormone-induced desensitization is dependent on protein kinase C (PKC) stimulation and (or) cytosolic calcium elevation. Mechanisms by which PKC and Ca(2+) promote NPR-A desensitization are not known. The role of cGMP and of the cytosolic Ca(2+) pathways in NPR-A desensitization were therefore studied. In contrast with the activation of NPR-A by its agonist, activation of soluble guanylyl cyclases of LLC-PK1 cells by sodium nitroprusside also leads to a production of cGMP but without altering NPR-A activation. Consequently, cGMP elevation per se does not appear to mediate homologous desensitization of NPR-A. In addition, cytosolic calcium increase is required only for the heterologous desensitization pathway since the calcium chelator BAPTA-AM blocks only PMA or ionomycin-induced desensitization. Calcineurin inhibitors block the NPR-A guanylyl cyclase heterologous desensitization induced by ionomycin, suggesting an essential role for this Ca(2+)-stimulated phosphatase in NPR-A desensitization. In summary, the present report demonstrates that neither cGMP nor Ca(2+) cytosolic elevation cause NPR-A homologous desensitization. Our results also indicate for the first time a role for calcineurin in NPR-A heterologous desensitization.  相似文献   

12.
Vascular endothelial cells have been shown to contain atrial natriuretic peptide (ANP)-sensitive Na-K-Cl cotransport system whose activity is regulated by intracellular cGMP levels. Addition of ANP to culture medium stimulated 86Rb+ uptake in bovine endothelial cells with a concomitant increase in cGMP contents. This action of ANP was mimicked by 8-bromo-cGMP and completely diminished by furosemide. These results indicate that ANP selectively activates the Na-K-Cl cotransporter in vascular endothelial cells via cGMP and offer new insight into the physiological significance of endothelial ANP receptors.  相似文献   

13.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

14.
A comparative study of natriuretic peptide receptor (NPR) was performed by cloning the NPR-A receptor subtype from the bullfrog (Rana catesbeiana) brain and analyzing its functional expression. Like other mammalian NPR-A receptors, the bullfrog NPR-A receptor consists of an extracellular ligand binding domain, a hydrophobic transmembrane domain, a kinase-like domain and a guanylate cyclase domain. Sequence comparison among the bullfrog and mammalian receptors revealed a relatively low ( approximately 45%) similarity in the extracellular domain compared to a very high similarity ( approximately 92%) in the cytoplasmic regulatory and catalytic domains. Expression of NPR-A mRNA was detected in various bullfrog tissues including the brain, heart, lung, kidney and liver; highest levels were observed in lung. Functional expression of the receptor in COS-7 cells revealed that frog atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) elicited cyclic guanosine 3'5'-monophosphate production by stimulating the receptor in a dose-dependent manner from 10(-10) M concentrations. Rat ANP was also effective in stimulating the frog receptor whereas rat BNP and porcine BNP were less responsive to the receptor. On the other hand, frog C-type natriuretic peptide (CNP) as well as porcine CNP stimulated the receptor only at high concentrations (10(-7) M). This clearly indicates that the bullfrog receptor is a counterpart of mammalian NPR-A, and is specific for ANP or BNP but not for CNP.  相似文献   

15.
A novel peptide, PNP (Pseudocerastes persicus natriuretic peptide), was isolated from the venom of the Iranian viper P. persicus. Amino acid sequencing revealed that the 37-residue peptide belongs to the family of natriuretic peptides. The physiological effects of intra-venously PNP infused into anesthetized rats on urine flow, sodium excretion and blood pressure were comparable to those of atrial natriuretic peptide (ANP). In PC12 cells that were treated with either PNP, ANP, or C-type natriuretic peptide, PNP induced a similar cGMP response as ANP. Since PC12 cells only express the natriuretic peptide receptor (NPR)-A receptor we conclude that PNP binds to the NPR-A receptor. The solution conformation of PNP was characterized using (1)H nuclear magnetic resonance spectroscopy and indicates a high degree of conformational flexibility.  相似文献   

16.
Natriuretic peptide receptor (NPR)-A is the primary signaling receptor for atrial natriuretic peptide and brain natriuretic peptide. Ligand binding to NPR-A rapidly activates its guanylyl cyclase domain, but its rate of cGMP synthesis declines with time. This waning of activity is called homologous desensitization and is mediated in part by receptor dephosphorylation. Here, we characterize two distinct NPR-A phosphatase activities. The serine/threonine protein phosphatase inhibitor, microcystin, inhibited the desensitization of NPR-A in membrane guanylyl cyclase assays in the absence of magnesium. EDTA also inhibited the desensitization, whereas MgCl(2) stimulated the desensitization. Because the effects of microcystin and EDTA were additive, and microcystin did not block the magnesium-dependent desensitization, the targets for these agents appear to be distinct. Incubation of membranes at 37 degrees C stimulated the dephosphorylation of NPR-A, and microcystin blocked the temperature-dependent dephosphorylation. The addition of MgCl(2) or MnCl(2), but not CaCl(2), further stimulated the dephosphorylation of NPR-A, and microcystin failed to inhibit this process. The desensitization required changes in the phosphorylation state of NPR-A because the guanylyl cyclase activity of a receptor variant containing glutamate substitutions at all six phosphorylation sites was unaffected by MgCl(2), EDTA, or microcystin. Together, these data indicate that NPR-A is regulated by two distinct phosphatases, possibly including a member of the protein phosphatase 2C family. Finally, we observed that the desensitization of NPR-A in membranes from mouse kidneys and NIH3T3 cells was increased by prior exposure to atrial natriuretic peptide, suggesting that hormone binding enhances receptor dephosphorylation.  相似文献   

17.
D G Lowe 《Biochemistry》1992,31(43):10421-10425
The human natriuretic peptide receptor-A (NPR-A) guanylyl cyclase is specifically activated to synthesize cGMP by binding of atrial natriuretic peptide (ANP) to the receptor's extracellular domain. In this report, NPR-A monoclonal and polyclonal antibodies were used to assess the aggregation status of wild-type NPR-A and a truncation mutant lacking most of the NPR-A cytoplasmic domain. On intact human embryonic kidney 293 cells, in the absence of ANP, recombinant human NPR-A is self-aggregated through disulfide bonds in an M(r) > 500,000, possibly tetrameric, complex. Under nonreducing conditions, truncated NPR-A was a monomer, indicating that the cytoplasmic domain is necessary for NPR-A self-association. In the presence of the homobifunctional cross-linker dithiobis(succinimidyl propionate), or disuccimidyl suberate, truncated NPR-A could be cross-linked as a dimer and trimer only in the presence of ANP. Wild-type NPR-A was cross-linked with disuccinimidyl suberate to an M(r) > 500,000 species in the absence of ANP, and with ANP, a smaller, M(r) approximately 400,000 receptor trimer cross-linking product was observed, together with the larger, possibly tetrameric complex. When whole cell stimulation of cGMP production by ANP was tested on the low level of endogenous 293 cell NPR-A, maximal stimulation was observed regardless of truncated NPR-A overexpression. The absence of a dominant negative effect by the truncated NPR-A, together with the cross-linking data, demonstrates that preassociated NPR-A is the functionally relevant form of this receptor.  相似文献   

18.
Systemic clearance of atrial natriuretic peptide (ANP) is in part due to neutral endopeptidase (NEP) proteolysis and natriuretic peptide receptor-C (NPR-C) mediated endocytosis. Biological responses to ANP are primarily mediated by the membrane guanylyl cyclase-A/natriuretic peptide receptor-A (NPR-A). Analogs of ANP selective for NPR-A and/or resistant to NEP may have increased activity in those tissues where NPR-C and NEP are coexpressed with NPR-A. The analog of ANP termed vANP; [(R3D, G9T, R11S, M12L, G16R)ANP] is selective for human NPR-A with at least 10,000 fold reduction in affinity for human NPR-C. We report that rat NPR-A is insensitive to 10 nM vANP, demonstrating the limitations of this species in evaluating human therapeutic candidates. As an alternative approach we tested the binding and potency of receptor-selective and NEP-resistant ANP analogs in rhesus monkey tissues. Competition binding studies with a simplified version of vANP, sANP [(G9T, R11S, G16R)rANP], in rhesus monkey kidney and lung membrane preparations shows displacement of 125I-ANP from only a fraction of the total ANP receptor population, 30 and 85%, respectively. The remaining ANP binding sites can be occupied with the NPR-C selective ligand cANP(4-23). These data strongly suggest that only two classes of ANP receptor are present in these membrane preparations, NPR-A and NPR-C. The NEP resistant sANP derivative called sANP(TAPR) was 8 fold more potent (ED50 = 0.6 nM) than rANP (ED50 = SnM) in stimulating cGMP production in the lung membrane preparation. Our results demonstrate that the rhesus monkey natriuretic peptide receptors reflect the pharmacology of the human receptors, and that this species may be suitable to determine the role of NPR-C and NEP in peptide clearance and attenuating functional responses.  相似文献   

19.
20.
To define developmental changes in atrial natriuretic peptide (ANP) secretion and in the cross talk between C-type natriuretic peptide (CNP) and ANP, we performed experiments in isolated perfused nonbeating cardiac atria isolated from rabbits between 1 and 8 wk of age. Changes in atrial pressure resulted in increases in atrial volume that rose with age and reached the peak value at 4 wk. A rise in volume change increased ANP secretion with concomitant translocation of extracellular fluid (ECF) into the atrial lumen, which increased with age and reached the peak value at 4 wk. The positive relationship between stretch-induced ANP secretion and ECF translocation shifted upward and leftward with age. CNP suppressed stretch-induced ANP secretion in the 8-wk-old group but not in the 2- and 4-wk-old groups without differences in ECF translocation and atrial volume. Therefore, the ANP secretion in terms of ECF translocation was markedly suppressed by CNP in the 8-wk-old group but not in the 2- and 4-wk-old groups. The production of cGMP by CNP in atrial tissue membranes was markedly attenuated in young rabbits. However, 8-bromo-cGMP suppressed stretch-induced ANP secretion in 2- and 8-wk-old groups. Natriuretic peptide receptor-B mRNA was similar in both groups. Therefore, we conclude that the inhibitory effect of CNP on atrial ANP secretion is developmentally regulated, being absent during normal cardiac development in young animals and intact in adult animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号