首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
We examined colonization by fishes and macro-invertebrates from permanent streams into an artificial freshwater stream simulating lotic temporary bodies of water that exist for only a limited period each year. After introducing water, invertebrates such as chironomid larvae in mud increased in numbers rapidly in the experimental stream, although they were rare in mud in the permanent streams. Eleven of 12 fish species present in the permanent streams colonized the experimental stream and preyed upon invertebrates, although fish composition differed significantly between the two streams. About 100 days after the initiation of the experiment, both species richness and diversity in the experimental stream reached almost the same level as that in the permanent streams. More diverse fishes colonized the complex section where habitat diversity was high compared to the simple section in the experimental stream. Our study strongly suggests that lotic temporary waters such as temporary streams around main rivers have unique ecological characteristics and serve as valuable foraging sites for fish.  相似文献   

2.
  1. In some regions, climate change is increasing the variability of rainfall and the frequency of extreme events such as drought. Consequently, non-flow periods have grown in length and frequency, both in temporary and in formerly permanent streams. Water abstraction for human use may further prolong these dry periods.
  2. We analysed the resistance and resilience of biofilms from permanent and temporary streams to non-flow conditions. This was achieved by exposing cobbles (collected from permanent and temporary streams) with intact biofilm to 31 days of non-flow, followed by 20 days of stream flow in artificial stream channels. Biofilm resistance and resilience were assessed at a structural (algal biomass, pigment composition, and algae and cyanobacteria composition) and functional level (photosynthetic efficiency and community metabolism).
  3. Algal taxa in biofilms from permanent and temporary streams differed throughout the experiment. Biofilms from permanent streams were less resistant to non-flow than those from temporary streams at structural level. Permanent stream biofilms also presented lower resilience at a structural level, but responded similarly to temporary stream biofilms at a functional level.
  4. Our investigation shows how the non-flow period disturbed permanent stream biofilms, and suggests that temporary stream biofilms will have greater adaptive capacity as hydroperiod becomes shorter due to climate change.
  相似文献   

3.
1.  We collected adult stoneflies periodically over a 1-year period at 38 sites in two headwater catchments in the Ouachita Mountains, Arkansas, U.S.A. The 43 species collected were a subset of the Ozark-Ouachita fauna and the much larger fauna of the eastern U.S.A. We estimated 78–91% species coverage in the two catchments using jackknife extrapolation of species richness from our survey.
2.  Many streams, especially small ones, lacked surface water for months, but others, both small and large, flowed permanently.
3.  Using published regional presence–absence and coarse ecological data in a discriminant function analysis (DFA), we identified stream size (negative) and regional frequency of occurrence (positive) as predictors of presence in these headwater catchments. For the combined catchments, the extrapolated richness (51 spp.) was similar to an estimate (48 spp.) based on predicted absences from DFA and the Ouachita provincial total of known stonefly species (57 spp.).
4.  Local species richness (1–27 spp. per site) was correlated strongly with stream size (catchment area) but was independent of stream drying. Generic richness was correlated negatively with stream drying and positively, but less strongly, with stream size.
5.  Regionally endemic stoneflies dominated in drying streams, and widely distributed species dominated in more permanent streams. The composition of stonefly assemblages was associated with regional factors (species pools, regional abundance, evolution of tolerant endemic species, regional climate) and local factors (drying, stream size).  相似文献   

4.
We examined Indiana fish assemblages using taxonomy and ecological categories to assess temporal shifts in community structure and recent environmental relationships. Historic (1945) and recent (1996–2007) presence/absence data were compiled by subbasin and analyzed with Nonmetric Multidimensional Scaling (NMS) ordination and by species richness. Canonical Correspondence Analysis (CCA) was used to test taxonomic identity and ecological category abundance data for explanation with recent (1996–2007) environmental variables. We found a decrease in assemblage heterogeneity for recent assemblages and an increase in the number of tolerant species per subbasin. Recent Indiana streams are dominated by tolerant fishes with generalist life history strategies and low functional variation. The use of ecological categories resulted in weaker relationships with environmental variables than analyses with taxonomic identities. Analyses using taxonomy resulted in strong assemblage explanation from stream size and flow variation, while analyses using ecological categories resulted in strong assemblage explanation from habitat variation in silt substrates and flow. Analyses of recent assemblage structure using ecological categories resulted in decreased assemblage variation among subbasins than in analyses using taxonomic identities. We found that fish assemblages of Indiana streams are structured primarily by habitat complexity and have been altered during the past 50 years through multiple disturbances including fragmentation, siltation, and species introductions.  相似文献   

5.
1. Physico-chemical conditions and benthic macroinvertebrates were studied in two adjacent alpine streams in the Tyrolean Alps, Austria, for 2 years, and aquatic insect emergence was recorded for 1 year.
2. In the spring-fed system, maximum discharge and increased concentrations of suspended solids, nitrate and particulate phosphorus occurred during snowmelt in June. In the glacier-fed stream, high discharge and strong diel fluctuations in flow and concentrations of suspended solids created a harsh and unstable environment during summer. Glacial ablation, variation in groundwater inflow, and water inputs from tributaries draining calcareous rocks caused water chemistry to vary both seasonally and longitudinally in glacier-fed Rotmoosache.
3. A total of 126 aquatic or semi-aquatic invertebrate taxa were collected, 94 of which were found in the glacier-fed stream and 120 in the spring-fed stream. Chironomid abundance was 2–8 times and taxa richness 2–3 times lower in the glacier-fed stream than in the spring-fed stream, as was the number of chironomid taxa (72 versus 93 total).
4. These results broadly support the conceptual model by Milner & Petts (1994) concerning glacier-fed stream systems. However, single samples and seasonal means showed relatively high invertebrate abundance and richness, especially during winter, indicating a considerable degree of spatial and temporal variability.
5. We suggest that the seasonal shifts from harsh environmental conditions in summer to less severe conditions in autumn and a rather constant environment in winter are an important factor affecting larval development, life-history patterns and the maintenance of relatively high levels of diversity and productivity in glacier-fed streams.  相似文献   

6.
Movement patterns of invertebrates in temporary and permanent streams   总被引:4,自引:0,他引:4  
C. M. Delucchi 《Oecologia》1989,78(2):199-207
Summary Although it has been shown that invertebrates recolonize reflooded temporary streams from permanent refuges, e.g., the hyporheic zone, it has not been shown that they actively move into these refuges as streams dry. Substrate filled cages and drift nets were used to monitor invertebrate movement in two temporary streams and a permanent stream prior to and during drying to determine whether invertebrates leave drying riffles and enter flooded riffles. Invertebrate movement was essentially unidirectional in the permanent stream with downstream drift and with-in-substrate downstream movement dominating. In the temporary stream, movement vertically downward toward the hyporheic zone and upstream movement substantially contributed to a departure from a unidirectional pattern. In addition, prior to stream drying the relative colonization rate was higher and drift rate was lower in the temporary streams than in the permanent stream. During drying of the temporary stream, upstream movement continued to dominate but hyporheic movement was unimportant. Further, the upstream movement did not occur at the end of the riffle where it would lead to migration into non-drying riffles. Thus, even though movement patterns were different in permanent and temporary streams the pattern observed during stream drying would result in the concentration and subsequent death of invertebrates in drying riffles. This observation demonstrates that movement patterns of stream invertebrates do not necessarily result in behavioral avoidance of a dry period of temporary fiffles.  相似文献   

7.
1. Macroinvertebrates were collected and physico‐chemical variables measured at 16 stream sites in Western Greenland during July 1999. Eight sites were located on Disko Island in an arctic oceanic climate and eight sites in the Kangerlussuaq area close to the icecap where the climate is arctic continental. The streams had different water sources (glacial, groundwater, snowmelt and lake water). 2. The streams showed pronounced differences in water temperature (2.2–17.3 °C), concentrations of suspended solids (0–2400 mg L?1), and conductivity (10–109 μS cm?1). Principal component analysis (PCA) analysis of the physico‐chemical variables separated the Disko Island sites into a distinct group, whereas the sites in the Kangerlussuaq area were more dispersed. 3. A total of 56 macroinvertebrate species were found, including 31 species of Chironomidae, the most abundant of which was Orthocladius thienemanni. Diamesa sp. was only the sixth most abundant chironomid taxon. Species composition varied between sites, and abundance varied from about 20 individuals m?2 in a glacier fed stream to more than 16 000 m?2 in a lake outlet. 4. The macroinvertebrate communities of the 16 streams were separated into five TWINSPAN groups reflecting water source, irrespective of region. Lake outlets and ground‐water‐fed streams had the highest species richness and abundance, temperature and bed stability, while glacier‐fed streams were characterized by low species richness, abundance, temperature, bed stability and high concentrations of suspended solids. Macroinvertebrate species richness was positively correlated with water temperature and negatively with bed stability. Conductivity was positively correlated with invertebrate abundance. 5. The results of this study suggest that the source of stream water can be used to predict invertebrate community composition in Greenlandic streams and thus the effects of changes in water balance and flow regime, and to identify sites of special conservation interest.  相似文献   

8.
Primary production in many ephemeral waters peaks soon after inundation, but the extent to which the algal biomass generated by this process is immediately available to aquatic herbivores as a food source has not been extensively studied. To examine this, we exposed natural epilithon from two permanent and two recently rewetted temporary reaches of an intermittent stream to grazing by small, presumably newly hatched, Limnodynastes tasmaniensis tadpoles and compared the algal content of tadpole feces to that of the assemblages on which they grazed. Rocks from the temporary sites, one colonized by tadpoles and one not, supported relatively flocculent, diatom-rich (79.7–85.7%) epilithon of similar biomass and taxonomic content. Epilithon from the permanent sites (one with and one without tadpoles) were more cohesive, contained fewer diatoms (57.0–60.7%), and differed in species composition from that of the temporary sites, and from one another. Feces and epilithon were more taxonomically similar when epilithon originated from temporary reaches than from permanent sites. This implies that grazing tadpoles accessed a greater percentage of the algal assemblages from recently rewetted sites. Algal species differed in susceptibility to ingestion by small tadpoles, but these differences were not consistent among habitats; susceptibility to ingestion was not predictable based solely on species growth habit, but was likely also affected by physiognomic differences in mat structure among habitats. A large percentage of algal cells ingested by tadpoles survived gut passage. `Live' cells (those with full chloroplasts) comprised 43.8–66.6% of all diatoms from epilithic samples and 27.4–42.7% of those in feces of small tadpoles. In contrast, only 12.8–14.9% of the diatoms in feces produced by large L. tasmaniensis tadpoles collected from the two tadpole-colonized sites contained full chloroplasts, suggesting higher digestion efficiency in large tadpoles than in small ones. Distinct, gut-passage-induced transitions from `live' diatoms to empty frustules or single diatom valves (`dead' cells) were evident when grazed material originated from temporary reaches. In contrast, `live' diatoms in epilithon from permanent sites were more likely to emerge in tadpole feces with reduced or fragmented chloroplasts. Thus, algae from temporary reaches appeared to be more efficiently digested than those from permanent reaches. While digestibility of individual taxa varied among sites, some algae (e.g., Synedra ulna) were clearly more digestible than others. Our results suggest that temporary stream reaches in arid-zone catchments are important sources of readily digestible autotrophic biomass for anuran species in these regions. Received: 5 March 1998 / Accepted: 9 November 1998  相似文献   

9.
Inorganic sediments of terrestrial origin may impact stream macroinvertebrate communities. Although input of terrestrial sediments to streams may occur naturally, human-induced activities in the catchment amplify this input greatly. We used an in-stream experiment to investigate whether short-term additions of terrestrial sediments of two size classes affected stream macroinvertebrates. The experiment was designed in blocks to minimize the influence of flow velocity and other environmental variables. Four treatments were employed: (i) addition of fine sand (0–0.24 mm), (ii) coarse sand (0.25–0.8 mm), (iii) fine+coarse sand, and (iv) control (water only). Macroinvertebrates were sampled immediately after the addition of sediments (or water). The experiment consisted of 20 blocks. We analyzed the response of the macroinvertebrate fauna in terms of abundance and species richness. Since species richness is strongly dependent on number of individuals sampled, we also analyzed rarefied species richness. Community structure was evaluated using a distance-based Manova on presence/absence and abundance data. The addition of coarse and fine+coarse sand reduced the abundance and species richness of macroinvertebrates in relation to the control. The response in terms of rarefied species richness in the treatments did not differ from the control, indicating that reduction in species richness was a sampling artifact resulting from decreased sample abundance. The Manova analyses indicated that coarse-sand addition caused changes in both species composition and community structure. Addition of fine and fine+coarse sand affected only slightly species composition and community structure. We concluded that even short-term input of terrestrial sediments causes impacts on benthic macroinvertebrates, and recommend that land-use management of tropical catchments should employ practices that reduce input of terrestrial sediments to streams. Handling editor: K. Martens  相似文献   

10.
Longitudinal succession of stream fish faunas is commonly related to increasing stream size and stability. However, effects of succession on assemblage morphology are seldom quantified. We used an ecomorphological approach to determine differences in faunal structure among distinct stream types of the Cheyenne River drainage in South Dakota, USA. During May–October 2004 we collected fishes monthly from five streams. We examined 28 morphological traits of the dominant fish species and compared morphological structure among faunas using univariate analysis of variance (ANOVA) tests and multivariate ordination and distance calculation techniques. Species richness and composition varied between smaller creeks and larger rivers. Morphological diversity increased with richness, but richer assemblages were also more tightly packed in morphospace, partly because of increased cyprinid richness. Some morphological differences were predicted by variation in mean discharge and discharge flashiness (flow stability). Fishes of more stable or larger river stations characteristically had smaller heads and mouths and longer intestines. Larger mean standard length was also associated with less flashy flow regimes and higher mean discharge. All assemblages were hyperdispersed in morphological space, consistent with the harsh zoogeographical history of the region and suggesting the presence of open niches. Increasing species and morphological diversity despite increasing discharge flashiness suggests higher niche diversity in Great Plains rivers compared to adjacent creeks. Handling editor: J. A. Cambray  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号