首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silverman AP  Jiang Q  Goodman MF  Kool ET 《Biochemistry》2007,46(48):13874-13881
The SOS-induced DNA polymerases II and IV (pol II and pol IV, respectively) of Escherichia coli play important roles in processing lesions that occur in genomic DNA. Here we study how electrostatic and steric effects play different roles in influencing the efficiency and fidelity of DNA synthesis by these two enzymes. These effects were probed by the use of nonpolar shape analogues of thymidine, in which substituted toluenes replace the polar thymine base. We compared thymine with nonpolar analogues to evaluate the importance of hydrogen bonding in the polymerase active sites, while we used comparisons among a set of variably sized thymine analogues to measure the role of steric effects in the two enzymes. Steady-state kinetics measurements were carried out to evaluate activities for nucleotide insertion and extension. The results showed that both enzymes inserted nucleotides opposite nonpolar template bases with moderate to low efficiency, suggesting that both polymerases benefit from hydrogen bonding or other electrostatic effects involving the template base. Surprisingly, however, pol II inserted nonpolar nucleotide (dNTP) analogues into a primer strand with high (wild-type) efficiency, while pol IV handled them with an extremely low efficiency. Base pair extension studies showed that both enzymes bypass non-hydrogen-bonding template bases with moderately low efficiency, suggesting a possible beneficial role of minor groove hydrogen bonding interactions at the N-1 position. Measurement of the two polymerases' sensitivity to steric size changes showed that both enzymes were relatively flexible, yielding only small kinetic differences with increases or decreases in nucleotide size. Comparisons are made to recent data for DNA pol I (Klenow fragment), the archaeal polymerase Dpo4, and human pol kappa.  相似文献   

2.
Human DNA polymerase nu (pol nu) is one of three A family polymerases conserved in vertebrates. Although its biological functions are unknown, pol nu has been implicated in DNA repair and in translesion DNA synthesis (TLS). Pol nu lacks intrinsic exonucleolytic proofreading activity and discriminates poorly against misinsertion of dNTP opposite template thymine or guanine, implying that it should copy DNA with low base substitution fidelity. To test this prediction and to comprehensively examine pol nu DNA synthesis fidelity as a clue to its function, here we describe human pol nu error rates for all 12 single base-base mismatches and for insertion and deletion errors during synthesis to copy the lacZ alpha-complementation sequence in M13mp2 DNA. Pol nu copies this DNA with average single-base insertion and deletion error rates of 7 x 10(-5) and 17 x 10(-5), respectively. This accuracy is comparable to that of replicative polymerases in the B family, lower than that of its A family homolog, human pol gamma, and much higher than that of Y family TLS polymerases. In contrast, the average single-base substitution error rate of human pol nu is 3.5 x 10(-3), which is inaccurate compared to the replicative polymerases and comparable to Y family polymerases. Interestingly, the vast majority of errors made by pol nu reflect stable misincorporation of dTMP opposite template G, at average rates that are much higher than for homologous A family members. This pol nu error is especially prevalent in sequence contexts wherein the template G is preceded by a C-G or G-C base pair, where error rates can exceed 10%. Amino acid sequence alignments based on the structures of more accurate A family polymerases suggest substantial differences in the O-helix of pol nu that could contribute to this unique error signature.  相似文献   

3.
Mizukami S  Kim TW  Helquist SA  Kool ET 《Biochemistry》2006,45(9):2772-2778
We describe the first systematic test of steric effects in the active site of a Y-family DNA polymerase, Dpo4. It has been hypothesized that low-fidelity repair polymerases in this family more readily accept damaged or mismatched base pairs because of a sterically more open active site, which might place lower geometric constraints on the incipient pair. We have tested the origin of low fidelity by use of five nonpolar thymidine analogues that vary in size by a total of 1.0 A over the series. The efficiency and fidelity of base-pair synthesis was measured by steady-state kinetics for single-nucleotide insertions. Analogues were examined both as incoming deoxynucleoside triphosphate (dNTP) derivatives and as template bases. The results showed that Dpo4 preferred to pair the thymidine shape mimics with adenine and, surprisingly, the preferred size was at the center of the range, the same optimum size as recently found for the high-fidelity Klenow fragment (Kf) of Escherichia coli DNA Pol I. However, the size preference with Dpo4 was quite small, varying by a factor of only 30-35 from most to least efficient thymidine analogue. This is in marked contrast to Kf, which showed a rigid size preference, varying by 1100-fold from best to worst. The fidelity for the non-hydrogen-bonding analogues in pairing with A over T, C, or G was much lower in Dpo4 than in the previous high-fidelity enzyme. The data establish that, unlike Kf, Dpo4 has very low steric selectivity and that steric effects alone cannot explain the fidelity (albeit low) that Dpo4 has for a correct base pair; the findings suggest that hydrogen bonds may be important in determining the fidelity of this enzyme. The results suggest that the low steric selectivity of this enzyme is the result of a conformationally flexible or loose active site that adapts with small energetic cost to different base-pair sizes (as measured by the glycosidic C1'-C1' distance), rather than a spatially large active site.  相似文献   

4.
DeCarlo L  Gowda AS  Suo Z  Spratt TE 《Biochemistry》2008,47(31):8157-8164
DNA damage that stalls replicative polymerases can be bypassed with the Y-family polymerases. These polymerases have more open active sites that can accommodate modified nucleotides. The lack of protein-DNA interactions that select for Watson-Crick base pairs correlate with the lowered fidelity of replication. Interstrand hydrogen bonds appear to play a larger role in dNTP selectivity. The mechanism by which purine-purine mispairs are formed and extended was examined with Solfolobus solfataricus DNA polymerase IV, a member of the RAD30A subfamily of the Y-family polymerases, as is pol eta. The structures of the purine-purine mispairs were examined by comparing the kinetics of mispair formation with adenine versus 1-deaza- and 7-deazaadenine and guanine versus 7-deazaguanine at four positions in the DNA, the incoming dNTP, the template base, and both positions of the terminal base pair. The time course of insertion of a single dNTP was examined with a polymerase concentration of 50 nM and a DNA concentration of 25 nM with various concentrations of dNTP. The time courses were fitted to a first-order equation, and the first-order rate constants were plotted against the dNTP concentration to produce k pol and K d (dNTP) values. A decrease in k pol/ K d (dNTP) associated with the deazapurine substitution would indicate that the position is involved in a crucial hydrogen bond. During correct base pair formation, the adenine to 1-deazaadenine substitution in both the incoming dNTP and template base resulted in a >1000-fold decrease in k pol/ K d (dNTP), indicating that interstrand hydrogen bonds are important in correcting base pair formation. During formation of purine-purine mispairs, the k pol/ K d (dNTP) values for the insertion of dATP and dGTP opposite 7-deazaadenine and 7-deazaguanine were decreased >10-fold with respect to those of the unmodified nucleotides. In addition, the rate of incorporation of 1-deaza-dATP opposite guanine was decreased 5-fold. These results suggest that during mispair formation the newly forming base pair is in a Hoogsteen geometry with the incoming dNTP in the anti conformation and the template base in the syn conformation. These results indicate that Dpo4 holds the incoming dNTP in the normal anti conformation while allowing the template nucleotide to change conformations to allow reaction to occur. This result may be functionally relevant in the replication of damaged DNA in that the polymerase may allow the template to adopt multiple configurations.  相似文献   

5.
The efficiency and fidelity of nucleotide incorporation by high-fidelity replicative DNA polymerases (Pols) are governed by the geometric constraints imposed upon the nascent base pair by the active site. Consequently, these polymerases can efficiently and accurately replicate through the template bases which are isosteric to natural DNA bases but which lack the ability to engage in Watson-Crick (W-C) hydrogen bonding. DNA synthesis by Poleta, a low-fidelity polymerase able to replicate through DNA lesions, however, is inhibited in the presence of such an analog, suggesting a dependence of this polymerase upon W-C hydrogen bonding. Here we examine whether human Polkappa, which differs from Poleta in having a higher fidelity and which, unlike Poleta, is inhibited at inserting nucleotides opposite DNA lesions, shows less of a dependence upon W-C hydrogen bonding than does Poleta. We find that an isosteric thymidine analog is replicated with low efficiency by Polkappa, whereas a nucleobase analog lacking minor-groove H bonding potential is replicated with high efficiency. These observations suggest that both Poleta and Polkappa rely on W-C hydrogen bonding for localizing the nascent base pair in the active site for the polymerization reaction to occur, thus overcoming these enzymes' low geometric selectivity.  相似文献   

6.
7.
8.
Human DNA polymerase iota (hPoliota), a member of the Y family of DNA polymerases, differs in remarkable ways from other DNA polymerases, incorporating correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. We present here the crystal structure of hPoliota bound to template G and incoming dCTP, which reveals a G.C + Hoogsteen base pair in a DNA polymerase active site. We show that the hPoliota active site has evolved to favor Hoogsteen base pairing, wherein the template sugar is fixed in a cavity that reduces the C1'-C1' distance across the nascent base pair from approximately 10.5 A in other DNA polymerases to 8.6 A in hPoliota. The rotation of G from anti to syn is then largely in response to this curtailed C1'-C1' distance. A G.C+ Hoogsteen base pair suggests a specific mechanism for hPoliota's ability to bypass N(2)-adducted guanines that obstruct replication.  相似文献   

9.
DNA polymerases contain active sites that are structurally superimposable and conserved in amino acid sequence. To probe the biochemical and structure-function relationship of DNA polymerases, a large library (200,000 members) of mutant Thermus aquaticus DNA polymerase I (Taq pol I) was created containing random substitutions within a portion of the dNTP binding site (Motif A; amino acids 605-617), and a fraction of all selected active Taq pol I (291 out of 8000) was tested for base pairing fidelity; seven unique mutants that efficiently misincorporate bases and/or extend mismatched bases were identified and sequenced. These mutants all contain substitutions of one specific amino acid, Ile-614, which forms part of the hydrophobic pocket that binds the base and ribose portions of the incoming nucleotide. Mutant Taq pol Is containing hydrophilic substitution I614K exhibit 10-fold lower base misincorporation fidelity, as well as a high propensity to extend mispairs. In addition, these low fidelity mutants containing hydrophilic substitution for Ile-614 can bypass damaged templates that include an abasic site and vinyl chloride adduct ethenoA. During polymerase chain reaction, Taq pol I mutant I614K exhibits an error rate that is >20-fold higher relative to the wild-type enzyme and efficiently catalyzes both transition and transversion errors. These studies have generated polymerase chain reaction-proficient mutant polymerases containing substitutions within the active site that confers low base pairing fidelity and a high error rate. Considering the structural and sequence conservation of Motif A, it is likely that a similar substitution will yield active low fidelity DNA polymerases that are mutagenic.  相似文献   

10.
Changing a highly conserved amino acid in motif A of any of the four yeast family B DNA polymerases, DNA polymerase alpha, delta, epsilon or zeta, results in yeast strains with elevated mutation rates. In order to better understand this phenotype, we have performed structure-function studies of homologous mutants of RB69 DNA polymerase (RB69 pol), a structural model for family B members. When Leu415 in RB69 pol is replaced with phenylalanine or glycine, the mutant polymerases retain high-catalytic efficiency for correct nucleotide incorporation, yet have increased error rates due to increased misinsertion, increased mismatch extension and inefficient proofreading. The Leu415Phe mutant also has increased dNTP insertion efficiency opposite a template 8-oxoG and opposite an abasic site. The 2.5 A crystal structure of a ternary complex of RB69 L415F pol with a correctly base-paired incoming dTTP reveals that the phenylalanine ring is accommodated within a cavity seen in the wild-type enzyme, without steric clash or major change in active site geometry, consistent with retention of high-catalytic efficiency for correct incorporation. In addition, slight structural differences were observed that could be relevant to the reduced fidelity of L415F RB69 pol.  相似文献   

11.
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX–XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.  相似文献   

12.
Human DNA polymerase ι (Polι) is a member of the Y family of DNA polymerases involved in translesion DNA synthesis. Polι is highly unusual in that it possesses a high fidelity on template A, but has an unprecedented low fidelity on template T, preferring to misincorporate a G instead of an A. To understand the mechanisms of nucleotide incorporation opposite different template bases by Polι, we have carried out pre-steady-state kinetic analyses of nucleotide incorporation opposite templates A and T. These analyses have revealed that opposite template A, the correct nucleotide is preferred because it is bound tighter and is incorporated faster than the incorrect nucleotides. Opposite template T, however, the correct and incorrect nucleotides are incorporated at very similar rates, and interestingly, the greater efficiency of G misincorporation relative to A incorporation opposite T arises predominantly from the tighter binding of G. Based on these results, we propose that the incipient base pair is accommodated differently in the active site of Polι dependent upon the template base and that when T is the templating base, Polι accommodates the wobble base pair better than the Watson-Crick base pair.  相似文献   

13.
Hashimoto K  Shimizu K  Nakashima N  Sugino A 《Biochemistry》2003,42(48):14207-14213
DNA polymerases delta and epsilon (pol delta and epsilon) are the two major replicative polymerases in the budding yeast Saccharomyces cerevisiae. The fidelity of pol delta is influenced by its 3'-5' proofreading exonuclease activity, which corrects misinsertion errors, and by enzyme cofactors. PCNA is a pol delta cofactor, called the sliding clamp, which increases the processivity of pol delta holoenzyme. This study measures the fidelity of 3'-5' exonuclease-proficient and -deficient pol delta holoenzyme using a synthetic 30mer primer/100mer template in the presence and absence of PCNA. Although PCNA increases pol delta processivity, the presence of PCNA decreased pol delta fidelity 2-7-fold. In particular, wild-type pol delta demonstrated the following nucleotide substitution efficiencies for mismatches in the absence of PCNA: G.G, 0.728 x 10(-4); T.G, 1.82 x 10(-4); A.G, <0.01 x 10(-4). In the presence of PCNA these values increased as follows: G.G, 1.30 x 10(-4); T.G, 2.62 x 10(-4); A.G, 0.074 x 10(-4). A similar but smaller effect was observed for exonuclease-deficient pol delta (i.e., 2-4-fold increase in nucleotide substitution efficiencies in the presence of PCNA). Thus, the fidelity of wild-type pol delta in the presence of PCNA is more than 2 orders of magnitude lower than the fidelity of wild-type pol epsilon holoenzyme and is comparable to the fidelity of exonuclease-deficient pol epsilon holoenzyme.  相似文献   

14.
15.
Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A “steric gate” pol ι mutant is considerably more active in the presence of Mn2+ compared with Mg2+ and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be “at risk” for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.  相似文献   

16.
Bulk replicative DNA synthesis in eukaryotes is highly accurate and efficient, primarily because of two DNA polymerases (Pols): Pols δ and ε. The high fidelity of these enzymes is due to their intrinsic base selectivity and proofreading exonuclease activity which, when coupled with post-replication mismatch repair, helps to maintain human mutation rates at less than one mutation per genome duplication. Conditions that reduce polymerase fidelity result in increased mutagenesis and can lead to cancer in mice. Whereas yeast Pol ε has been well characterized, human Pol ε remains poorly understood. Here, we present the first report on the fidelity of human Pol ε. We find that human Pol ε carries out DNA synthesis with high fidelity, even in the absence of its 3'→5' exonucleolytic proofreading and is significantly more accurate than yeast Pol ε. Though its spectrum of errors is similar to that of yeast Pol ε, there are several notable exceptions. These include a preference of the human enzyme for T→A over A→T transversions. As compared with other replicative DNA polymerases, human Pol ε is particularly accurate when copying homonucleotide runs of 4-5 bases. The base pair substitution specificity and high fidelity for frameshift errors observed for human Pol ε are distinct from the errors made by human Pol δ.  相似文献   

17.
DNA polymerase beta (pol beta) is an ideal system for studying the role of its different amino acid residues in the fidelity of DNA synthesis. In this study, the T79S variant of pol beta was identified using an in vivo genetic screen. T79S is located in the N-terminal 8-kDa domain of pol beta and has no contact with either the DNA template or the incoming dNTP substrate. The T79S protein produced 8-fold more multiple mutations in the herpes simplex virus type 1-thymidine kinase assay than wild-type pol beta. Surprisingly, T79S is a misincorporation mutator only when using a 3'-recessed primer-template. In the presence of a single nucleotide-gapped DNA substrate, T79S displays an antimutator phenotype when catalyzing DNA synthesis opposite template C and has similar fidelity as wild type opposite templates A, G, or T. Threonine 79 is located directly between two helix-hairpin-helix motifs located within the 8-kDa and thumb domains of pol beta. As the pol beta enzyme closes into its active form, the helix-hairpin-helix motifs appear to assist in the production and stabilization of a 90 degrees bend of the DNA. The function of the bent DNA is to present the templating base to the incoming nucleotide substrate. We propose that Thr-79 is part of a hydrogen bonding network within the helix-hairpin-helix motifs that is important for positioning the DNA within the active site. We suggest that alteration of Thr-79 to Ser disrupts this hydrogen bonding network and results in an enzyme that is unable to bend the DNA into the proper geometry for accurate DNA synthesis.  相似文献   

18.
19.
DNA polymerase zeta (pol zeta), which is required for DNA damage-induced mutagenesis, functions in the error-prone replication of a wide range of DNA lesions. During this process, pol zeta extends from nucleotides incorporated opposite template lesions by other polymerases. Unlike classical polymerases, pol zeta efficiently extends from primer-terminal base pairs containing mismatches or lesions, and it synthesizes DNA with moderate fidelity. Here we describe genetic and biochemical studies of three yeast pol zeta mutant proteins containing substitutions of highly conserved amino acid residues that contact the triphosphate moiety of the incoming nucleotide. The R1057A and K1086A proteins do not complement the rev3Delta mutation, and these proteins have significantly reduced polymerase activity relative to the wild-type protein. In contrast, the K1061A protein partially complements the rev3Delta mutation and has nearly normal polymerase activity. Interestingly, the K1061A protein has increased fidelity relative to wild-type pol zeta and is somewhat less efficient at extending from mismatched primer-terminal base pairs. These findings have important implications both for the evolutionary divergence of pol zeta from classical polymerases and for the mechanism by which this enzyme accommodates distortions in the DNA caused by mismatches and lesions.  相似文献   

20.
Yan SF  Wu M  Geacintov NE  Broyde S 《Biochemistry》2004,43(24):7750-7765
Fidelity of DNA polymerases is predominantly governed by an induced fit mechanism in which the incoming dNTP in the ternary complex fits tightly into a binding pocket whose geometry is determined by the nature of the templating base. However, modification of the template with a bulky carcinogen may alter the dNTP binding pocket and thereby the polymerase incorporation fidelity. High fidelity DNA polymerases, such as bacteriophage T7 DNA polymerase, are predominantly blocked by bulky chemical lesions on the template strand during DNA replication. However, some mutagenic bypass can occur, which may lead to carcinogenesis. Experimental studies have shown that a DNA covalent adduct derived from (+)-anti-BPDE [(+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene], a carcinogenic metabolite of benzo[a]pyrene (BP), primarily blocks Sequenase 2.0, an exo(-) T7 DNA polymerase; however, a mismatched dATP can be preferentially inserted opposite the damaged adenine templating base within the active site of the polymerase [Chary, P., and Lloyd, R. S. (1995) Nucleic Acids Res. 23, 1398-1405]. The goal of this work is to elucidate structural features that contribute to DNA polymerase incorporation fidelity in the presence of this bulky covalent adduct and to interpret the experimental findings on a molecular level. We have carried out molecular modeling and molecular dynamics simulations with AMBER 6.0, investigating a T7 DNA polymerase primer-template closed ternary complex containing this 10S (+)-trans-anti-[BP]-N(6)-dA adduct in the templating position within the polymerase active site. All four incoming dNTPs were studied. The simulations show that the BP ring system fits well into an open pocket on the major groove side of the modified template adenine with anti glycosidic bond conformation, without disturbing critical polymerase-DNA interactions. However, steric hindrance between the BP ring system and the primer-template DNA causes displacement of the modified template adenine, so that the dNTP base binding pocket is enlarged. This alteration can explain the experimentally observed preference for incorporation of dATP opposite this lesion. These studies also rationalize the observed lower probabilities of incorporation of the other three nucleotides. Our results suggest that the differences in incorporation of dGTP, dCTP, and dTTP are due to the effects of imperfect geometric complementarity. Thus, the simulations suggest that altered DNA polymerase incorporation fidelity can result from adduct-induced changes in the dNTP base binding pocket geometry. Furthermore, plausible structural explanations for the observed effects of [BP]-N(6)-dA adduct stereochemistry on the observed stalling patterns are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号