首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Peppermint (Mentha piperita) is known as an important medicinal plant throughout the world. In the present study, after exposing peppermint plants under drought stress, the qRT-PCR was use to analyze the expression of genes involved in menthol biosynthesis pathway and encoding: limonene synthase (lS), limon-3-hydroxylase (l3oh), trans-isopiperitenol dehydrogenase (ipd), isopiperitenone reductase (ipr), pulegone reductase (pr), menthol dehydrogenase (mdeh), and menthofuran synthase (mfs), which also evaluated the morphological and physiological traits. The results revealed that due to water stress, the gene expression levels of ipd, ipr, and mfs were increased, whereas the gene expression level of pr and mdeh was decreased under water stress conditions. The most of essential oil components (menthol, menthofuran, and plugene), which were analyzed by gas chromatography–mass spectrometry (GC–MS), was positively correlated with genes expression. Drought stress decreased morphological and induces increasing contents of pulegone and menthofuran and reduction in menthol percentages. Results from this study suggest that up-regulation of mfs might contribute to the altered of menthofuran as well as down-regulation of mdeh might cause the reduction of menthol. Furthermore, increasing ls gene expression levels might induce more essential oil yield, while reduction of mfs gene expression levels causes an improvement of essential oil quality.  相似文献   

2.
The involvement of gibberellins (GAs) in the control of flower induction in the short-day plant Ipomoea nil has been investigated. To clarify the molecular basis of this process, we identified the full-length cDNAs of the InGA20ox3 and InGA2ox1 genes, which encode enzymes responsible for GA biosynthesis and catabolism, respectively. We studied the expression patterns of both genes and determined the tissue and cellular immunolocalisation of gibberellic acid (GA3) in the cotyledons of 5-day-old seedlings growing under inductive and non-inductive photoperiodic conditions. In the second half of the inductive night, which is crucial for flower induction in I. nil, InGA20ox3 expression decreased, whereas InGA2ox1 mRNA accumulated, which indicates that photoperiod regulates the activity of both genes. Furthermore, these changes are correlated with GA3 level. Thus, our results support the thesis that the proper balance between the expression of the InGA20ox3 and InGA2ox1 genes and low GA3 content correlate with photoperiodic flower induction in I. nil.  相似文献   

3.
4.
5.
6.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), an important enzyme in the 2-c-methyl-d-erythritol-4-phosphate (MEP) pathway in plant plastids, provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the roles of the MEP pathway in regulating growth, development and artemisinin biosynthesis of Artemisia annua L., we used RNA interference technology to generate transgenic plants with suppressed expression of DXR in A. annua (AaDXR). Suppression of AaDXR resulted in shorter stems, decreased branch numbers and leaf area, lower density of leaf trichomes. Although AaDXR-RNAi plants had no significant changes on the stomatal conductance, the net photosynthesis rate was decreased by 20.0–31.4% due to the marked decline in the contents of chlorophyll. Decreased levels of endogenous gibberellic acid (GA3) and abscisic acid were also detected in the transgenic lines. The artemisinin contents in leaves of all tested transgenic lines declined by 41.8–73.4% at the vegetative stage and 61.5–63.6% at the stages of flowering. The enhancement of artemisinin contents by methyl jasmonate at 300 µM has been abolished at seedling and vegetative stages in AaDXR-RNAi plants. These results demonstrate that AaDXR play import roles in the control of plan vegetative growth and artemisinin biosynthesis in A. annua.  相似文献   

7.
8.
An obligate methylotroph Methylobacillus arboreus IvaТ (VKM B-2590Т, CCUG 59684T, DSM 23628T) is the first known aerobic methylotrophic bacterium capable of synthesis of the bioactive gibberellic acid GA3. Primary separation and identification of gibberellic acid from the culture liquid of methanol-grown culture were carried out using thin-layer chromatography and high-performance liquid chromatography. The concentration and structure of the gibberellic acid GA3 were determined by liquid chromatography?mass spectrometry (LC/MS). Biological activity of the isolated compound was confirmed by tests on sprouts of lettuce (Laсtuca sativa L.).  相似文献   

9.
10.
Cyclotides are small plant disulfide-rich and cyclic proteins with a diverse range of biological activities. Cyclotide-like genes show key sequence features of cyclotides and are present in the Poaceae. In this study the cDNA of the nine cyclotide-like genes were cloned and sequenced using 3′RACE from Zea mays. The gene expression of two of these genes (Zmcyc1 and Zmcyc5) were analyzed by real-time PCR in response to biotic (Fusarium graminearum, Ustilago maydis and Rhopalosiphum maydis) and abiotic (mechanical wounding, water deficit and salinity) stresses, as well as in response to salicylic acid and methyl jasmonate elicitors to mimic biotic stresses. All isolated genes showed significant similarity to other cyclotide-like genes and were classified in two separate clusters. Both Zmcyc1 and Zmcyc5 were expressed in all studied tissues with the highest expression in leaves and lowest expression in roots. Wounding, methyl jasmonate and salicylic acid significantly induced the expression of Zmcyc1 and Zmcyc5 genes, but the higher expression was observed for Zmcyc1 as compared with Zmcyc5. Expression levels of these two genes were also induced in inoculated leaves with F. graminearum, U. maydis and also in response to insect infestation. In addition, the 1000-base-pairs (bp) upstream of the promoter of Zmcyc1 and Zmcyc5 genes were identified and analyzed using the PlantCARE database and consequently a large number of similar biotic and abiotic cis-regulatory elements were identified for these two genes.  相似文献   

11.
Thidiazuron [N-phenyl-N-(1, 2, 3-thidiazol-5-yl) urea, TDZ] treatment significantly improved shoot morphogenesis of Saussurea involucrata Kar. Et Kir (S. involucrata) leaf explants. The biochemical mechanisms underlying TDZ-induced shoot organogenesis were investigated by measuring endogenous plant growth hormones, H2O2, as well as the activities of superoxide dismutase (SOD) and catalase (CAT). The levels of endogenous gibberellic A3 (GA3) and zeatin (ZT) significantly increased in leaf explants subject to a 28-day treatment than the controls. However, extending exposure time to TDZ inhibited GA3 accumulation. At the same time, the SOD activity increased significantly until the 28th of TDZ treatment time and the CAT activity reduced simultaneously, which was closely linked with the significant increase in H2O2 concentrations in the explants. And there was a sharply promotion after the 35 day of culture time if the plant tissue was always in medium contained, which was in company with the cell activity decreased. We propose that a combination of increased GA3, ZT, and H2O2 concentration is the basis for the enhanced shoot morphogenesis in response to TDZ treatment. These results provide a starting point for an improved understanding of the biochemical mechanisms underlying TDZ-induced shoot organogenesis of S. involucrata.  相似文献   

12.

Key message

GmDW1 encodes an ent-kaurene synthase (KS) acting at the early step of the biosynthesis pathway for gibberellins (GAs) and regulates the development of plant height in soybean.

Abstract

Plant height is an important component of plant architecture, and significantly affects crop breeding practices and yield. Here, we report the characterization of an EMS-induced dwarf mutant (dw) of the soybean cultivar Zhongpin 661 (ZDD23893). The dw mutant displayed reduced plant height and shortened internodes, both of which were mainly attributed to the longitudinally decreased cell length. The bioactive GA1 (gibberellin A1) and GA4 (gibberellin A4) were not detectable in the stem of dw, and the dwarf phenotype could be rescued by treatment with exogenous GA3. Genetic analysis showed that the dwarf trait of dw was controlled by a recessive nuclear gene. By combining linkage analysis and mapping-by-sequencing, we mapped the GmDW1 gene to an approximately 460-kb region on chromosome (Chr.) 8, containing 36 annotated genes in the reference Willliams 82 genome. Of these genes, we identified two nonsynonymous single nucleotide polymorphisms (SNPs) that are present in the encoding regions of Gmdw1 and Glyma.08G165100 in dw, respectively. However, only the SNP mutation (T>A) at nucleotide 1224 in Gmdw1 cosegregated with the dwarf phenotype. GmDW1 encodes an ent-kaurene synthase, and was expressed in various tissues including root, stem, and leaf. Further phenotypic analysis of the allelic variations in soybean accessions strongly indicated that GmDW1 is responsible for the dwarf phenotype in dw. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding.
  相似文献   

13.
The present research investigates the effect of Piriformospora indica, an endophytic fungus, on production of protoberberine alkaloids in in vitro cell suspension cultures of Tinospora cordifolia. Although T. cordifolia produces a number of protoberberine alkaloids, the simultaneous production of jatrorrhizine and palmatine in cell suspension cultures of T. cordifolia was observed for the first time with the use of P. indica as biotic elicitor. The cells in suspension cultures were elicitated with P. indica on 14th day of culture initiation and the production of the alkaloids on 16th day was monitored. The autoclaved as well as filter sterilized cultures of P. indica were used in addition to the use of fungal cell extract. The elicitor effect of P. indica was analyzed and compared with other abiotic elicitor (methyl jasmonate) and biotic elicitors (chitin and chitosan). The culture filtrate of P. indica in the filter sterilized (5.0% v/v) form gave better response with enhanced 4.2-fold production of jatrorrhizine (10.72 mg/g DW) and 4.0-fold production of palmatine (4.39 mg/g DW). The production of these compounds was at par with that achieved in methyl jasmonate (at 250 µM) treated cell suspension cultures.  相似文献   

14.
15.
16.
This study aimed to identify suitable reference genes under three chemical inducers, methyl jasmonate (MeJA), salicylic acid (SA) and hydrogen peroxide (H2O2) in Ganoderma lucidum. In this study, expression stabilities of 14 candidate reference genes had been validated. Four algorithms were used: geNorm, NormFinder, BestKeeper, and RefFinder. Our results showed that, in short time, UCE2 (ubiquitin conjugating enzyme) was the most stable gene both in MeJA and H2O2 treatments, ACTIN (beta-actin) was the most suitable reference gene for SA treatment. ACTIN/UCE2 were considered the most suitable genes to normalize in MeJA, SA and H2O2 conditions. In long time, PP2A (protein phosphatase 2A regulatory subunit) was the most stable gene in MeJA and SA treatments, UCE2 was the most suitable reference gene for H2O2 treatment. PP2A/UBQ1 (polyubiquitin 1) were considered the most suitable genes to normalize in MeJA, SA and H2O2 conditions. Furthermore, target gene, oxidosqualene cyclase (osc), was selected to validate the most and least stable reference genes under different treatments. Our work provided a better support to study the regulatory mechanism of MeJA, SA and H2O2 on biological functions.  相似文献   

17.
Plant height is determined by the processes of cell proliferation and elongation. Plant hormones play key roles in a species-dependent manner in these processes. We used paclobutrazol (PAC) at 400 mg·L-1 in this study to spray Agapanthus praecox ssp. orientalis plants in order to induce dwarf scape (inflorescence stem). Morphological examination showed that PAC reduced scape height by inhibiting the cell elongation by 54.56% and reducing cell proliferation by 10.45% compared to the control. Quantification and immunolocalization of endogenous gibberellins (GAs) and indole-3-acetic acid (IAA) showed that the GA1, GA3, and GA4 levels and the IAA gradient were reduced. Among these hormones, GA4 was the key component of GAs, which decreased 59.51-92.01% compared to the control in scape. The expression of cell wall synthesis related genes cellulose synthase (CESA) and UDP-glucuronic acid decarboxylase (UXS) were upregulated significantly, whereas cell wall loosening gene xyloglucan endotransglucosylase 2 (XET2) was downregulated by 99.99% surprisingly. Correlation analysis suggested GA regulated cell elongation and auxin modulated cell proliferation in Agapanthus scape. Additionally, the accumulation of sugars played roles in cell wall synthesis and cell expansion. These results indicated GA and IAA signals triggered a downstream signaling cascade, controlled cell expansion and proliferation during scape elongation.  相似文献   

18.
We investigated the influence of gibberellic acid (GA3; 0, 1, 10, and 100 μM) on Nostoc linckia culture at 7, 14, and 21 days. The fresh and dry weight of N. linckia was increased considerably by the 10 and 100 μM GA3 treatments. A reduction in heterocyst frequency was observed in cultures treated with 1 and 10 μM GA3. Adding GA3 to N. linckia culture had a little effect on cell size. The amount of chlorophyll a and carotenoids decreased at all concentrations of GA3. The amount of phycocyanin increased up to twofold in 7-day-old culture treated with 1 μM GA3, and similar changes were observed for allophycocyanin and phycoerythrin content after 7 days. The effect of GA3 on reducing sugar content was different and was dependent on the growth period. A reduction in soluble sugar content was detected after GA3 application in 7- and 14-day-old cyanobacteria. Cultures treated with GA3 had a higher protein content after 14 days and a lower protein content after 7 and 21 days, and reduced nitrogenase activity after 7, 14, and 21 days. Our data show that GA3 application can be a suitable and inexpensive way to increase N. linckia biomass and phycobiliprotein production.  相似文献   

19.
To evaluate the effectiveness of a germin-like protein (GLP) in legumes against the serious soil-borne pathogen Fusarium oxysporum f. sp. lentis, an Oryza sativa root-expressed GLP (OsRGLP1) was expressed in the model legume Medicago truncatula using the recombinant vector pCOsRGLP1. The transgene was highly expressed in M. truncatula transformed lines as assessed by RT-qPCR. Consistent with the active status of the transgene there was an elevated accumulation of H2O2 in transformed progeny. Enzymatic characterization of T1 transgenic progeny showed increased superoxide dismutase (SOD) activity. The additional SOD activity in transgenic lines was insensitive to potassium cyanide and sensitive to H2O2 indicating its resemblance to FeSOD. The effectiveness of the OsRGLP1 gene was tested by monitoring the root disease after infection of wild-type and transgenic lines. Wild-type plants were greatly affected by the pathogen infection showing a percent disease index value of 50 compared to 10–18 for the transgenic lines. The tolerance of the transgenic lines leads to recovery in fresh weight and pod production to an almost normal level. Analysis of defense-related genes downstream of hydrogen peroxide (H2O2) in transgenic plants showed induction of salicylic acid and jasmonate signaling pathways and increased expression of some pathogenesis-related-1 (PR-1) genes and a plant defensin gene. Overall, the findings suggest that OsRGLP1 provides protection against the fungal pathogen F. oxysporum that may involve the direct influence of H2O2 on signaling pathways leading to the activation of defense-related genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号