首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

An in vitro study was conducted to determine the effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and formation of conjugated linoleic acids (CLA) by mixed ruminal microorganisms. Cell wall components extracted from wheat straw (representing lignified fibre), soybean hulls (representing easily digestible fibre), and purified cellulose were used as substrates. Sunflower oil was supplemented at the same level for all three types of fibre. After 24 h of incubation, ruminal fermentation parameters (including 24 h gas production, pH value, concentration of ammonia nitrogen and volatile fatty acids) and the concentration of long chain fatty acids in the culture fluid were determined. Results showed that the type of fibre influenced ruminal fermentation traits and the biohydrogenation of unsaturated C18 fatty acids in vitro. Composition of LCFA and profile of CLA were altered by the fibre type. Compared to the digestible fibre and purified cellulose, lignified fibre significantly increased the production of cis-9, trans-11 CLA and total CLA (sum of cis-9, trans-11 CLA, trans-10, cis-12 CLA, trans-9, trans-11 CLA, and cis-9, cis-11 CLA) by ruminal microorganisms. It was concluded that ruminal fermentation and production of CLA can be affected by the type of dietary fibre.  相似文献   

2.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

3.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

4.
Production of conjugated linoleic acid (CLA) by the potential probiotic bacterium Lactobacillus plantarum WU-P19 was investigated with the aim of enhancing production. CLA produced using this bacterium may be used to supplement dietary intake. Cultures were fed linoleic acid for conversion to CLA and the CLA produced was measured. In some cases, chitosan was added to cultures to improve cellular uptake of linoleic acid. Under static conditions at 37 °C, the bacterium grew and produced CLA in the pH range of 5.5–6.5. At pH 6.0, a 36-h incubation period maximized the concentration of the dry biomass (0.82 g/L), the CLA content in the biomass (4.1 mg/g), and linoleic acid in the biomass (1.2 mg/g). In comparison with cultures grown without linoleic acid in the medium, supplementing the medium with linoleic acid at 600 μg/mL slowed the production of CLA, but the CLA content in the dry biomass increased to 12–14 mg/g and the linoleic acid content increased to 8–11 mg/g. Supplementing the culture medium with chitosan and linoleic acid enhanced production of CLA in the dry biomass to 21 mg/g within 36 h. Nearly 50% of the CLA was cis-9, trans-11-CLA, and the remainder was trans-10, cis-12-CLA. Linoleic acid content of the dry biomass was increased to 37 mg/g. Accumulation of CLA in the cells was enhanced by feeding linoleic acid. Supplementing the culture with linoleic acid and chitosan further increased accumulation of CLA.  相似文献   

5.
Most studies of linoleic acid biohydrogenation propose that it converts to stearic acid through the production of cis-9 trans-11 CLA and trans-11 C18:1. However, several other CLA have been identified in ruminai contents, suggesting additional pathways may exist. To explore this possibility, this research investigated the linoleic acid biohydrogenation pathway to identify CLA isomers in cultures of ruminai microorganisms after dosing with a 13C stable isotope. The 13C enrichment was calculated as [(M+1/M)×100] in labeled minus unlabeled cultures. After 48 h incubation, significant 13C enrichment was observed in seven CLA isomers, indicating their formation from linoleic acid. All enriched CLA isomers had double bonds in either the 9,11 or 10,12 position except for trans-9 cis-11 CLA. The cis-9 trans-11 CLA exhibited the highest enrichment (30.65%), followed by enrichments from 21.06 to 23.08% for trans-10 cis-12, cis-10 trans-12, trans-9 trans-11, and trans-10 trans-12 CLA. The remaining two CLA (cis-9 cis-11 and cis-10 cis-12 CLA) exhibited enrichments of 18.38 and 19.29%, respectively. The results of this study verified the formation of cis-9 trans-11 and trans-10 cis-12 CLA isomers from linoleic acid biohydrogenation. An additional five CLA isomers also contained carbons originating from linoleic acid, indicating that pathways of linoleic acid biohydrogenation are more complex than previously described.  相似文献   

6.
Two isolates from Korean faecal samples converted linoleic acid (LA) into conjugated linoleic acid (CLA), and were identified as Bifidobacterium breve and Bifidobacterium pseudocatenulatum by analysis of 16S rRNA sequences. In both cases, the major CLA was the cis-9, trans-11 isomer and CLA production paralleled the increase in cell biomass with both bacteria and was maximal at 30 h. The quantities of supernatant CLA produced by B. breve and B. pseudocatenulatum were 160 and 135 mg l–1, from 500 mg LA l–1, respectively. In the presence of 0.05% LA, the growth of B. breve was weakly inhibited but that of B. pseudocatenulatum was not affected over 6 days fermentation. During fermentation, the majority of CLA isomers were in the culture supernatant, but with washed cells obtained at the early stationary phase, 36 h, about 40% was detected in the cellular lipid. The optimal culture age with equal concentrations of washed cells for CLA production by the two bifidobacteria was determined to be 36 h. At this culture age, total CLA conversion of supernatant and cell pellets was 78% in B. breve and 69% in B. pseudocatenulatum from 0.01% LA.  相似文献   

7.
We conducted an in-depth investigation of the effects of conjugated linoleic acid (CLA) on the expression of key metabolic genes and genes of known importance in intestinal lipid metabolism using the Caco-2 cell model. Cells were treated with 80 μmol/L of linoleic acid (control), trans-10, cis-12 CLA or cis-9, trans-11 CLA. RNA was isolated from the cells, labelled and hybridized to the Affymetrix U133 2.0 Plus arrays (n = 3). Data and functional analysis were preformed using Bioconductor. Gene ontology analysis (GO) revealed a significant enrichment (P < 0.0001) for the GO term lipid metabolism with genes up-regulated by trans-10, cis-12 CLA. Trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, altered the expression of a number of genes involved in lipid transport, fatty acid metabolism, lipolysis, β-oxidation, steroid metabolism, cholesterol biosynthesis, membrane lipid metabolism, gluconeogenesis and the citrate cycle. These observations warrant further investigation to understand their potential role in the metabolic syndrome.  相似文献   

8.
The substrate selectivity of several microbial lipases has been examined in the esterification of the conjugated linoleic acid (CLA) isomers cis-9,trans-11-, cis-9,cis-11-, trans-9,trans-11- and trans-10,cis-12-octadecadienoic acid with n-butanol in n-hexane. Lipases from Candida cylindracea and Mucor miehei had a preference for the cis-9,trans-11-octadecadienoic acid, while Chirazyme L-5, a Candida antarctica lipase A, accepted the trans-9,trans-11-fatty acid with a high selectivity. Moreover, lipase from Candida cylindracea and Chirazyme L-5 catalysed the esterification of the cis-9,trans-11-octadecadienoic acid with n-butanol faster than the corresponding reaction of the trans-10,cis-12-fatty acid.  相似文献   

9.
Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11–18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, α-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], γ-linolenic acid (cis-6,cis-9,cis-12–18:3), columbinic acid (trans-5,cis-9,cis-12–18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from α-linolenic acid, which were identified as cis-9,trans-11,cis-15–18:3, trans-9,trans-11,cis-15–18:3, and trans-10,cis-15–18:2. Four major fatty acids were produced from γ-linolenic acid, which were identified as cis-6,cis-9,trans-11–18:3, cis-6,trans-9,trans-11–18:3, cis-6,trans-10–18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from α-linolenic acid and γ-linolenic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Ricinoleic acid (12-hydroxy-cis-9-octadecaenoic acid) was an effective substrate for conjugated linoleic acid (CLA) production by washed cells of Lactobacillus plantarum AKU 1009a. The CLA produced was a mixture of cis-9,trans-11- and trans-9,trans-11-octadecadienoic acids. Addition of alpha-linolenic acid to the culture medium increased the CLA productivity of the washed cells. In the presence of lipase, castor oil, in which the main fatty acid component is ricinoleic acid, also was a substrate for CLA.  相似文献   

11.
Lactobacilli isolated from the rumen of cattle were subjected to morphological and biochemical characterizations followed by PCR-based identification. Among isolates, Lactobacillus brevis was found to be the most prevalent species in the rumen. For in vitro conjugated linoleic acid (CLA) production, the two isolates of L. brevis and one each of Lactobacillus viridescens and Lactobacillus lactis were selected. The sunflower oil (i.e., 0.25, 0.5 and 1.0%; a rich source of linoleic acid) was added to skim milk as a substrate for CLA production by isolates at 37 °C/12 h. L. brevis 02 was found to be the most potential CLA producer (10.53 mg CLA/g fat) at 0.25% concentration of sunflower oil followed by L. brevis 01 (8.27 mg CLA/g fat). However, at higher level of sunflower oil (i.e., 1.0%), L. lactis was the highest CLA producer (9.22 mg/g fat) when compared to L. brevis and L. viridescens. The results indicated that L. brevis and/or CLA production was inhibited with increasing concentration of sunflower oil in skim milk. In contrast, L. lactis and L. viridescens could tolerate the increasing concentrations of sunflower oil and produced higher CLA. Overall, L. brevis extends a possibility to be used as a direct-fed microbial for ruminants to increase the CLA content in milk, however, in vivo trials are needed for validation of results obtained.  相似文献   

12.
Forty Large White pigs were fed from 30kg to 103kg body mass on diets supplemented with 6% of pure high-oleic sunflower oil (HO) or HO plus increasing amounts of partially hydrogenated rape seed oil (HR; 1.85%, 3.70%, 5.55%), containing high levels of j 6 to j 11 C 18:1 trans fatty acid isomers. Increasing dietary C 18: trans fatty acids resulted in a linear increase in C 18:1 trans fatty acids and conjugated linoleic acid (cis-9, trans-11 CLA) in backfat (BF) as well as in neutral lipids (NL) and phospholipids (PL) of M. long. dorsi. Thus, the rate of bioconversion of trans vaccenic acid (TVA) into CLA and incorporation of C 18:1 trans and CLA into pig adipose tissue was not limited up to 25g total C 18:1 trans fatty acids including 3.3g of TVA perkg feed. BF was higher in C 18:1 trans fatty acids and CLA than M. long. dorsi NL and PL. In BF and NL the sum of saturated fatty acids (SFA) increased with increasing dietary amounts of HR, while in PL SFA were reduced. Thus, according to their physical properties, C 18:1 trans fatty acids partly replaced SFA in PL. Firmness of backfat was also significantly increased (P<0.05) with increasing amounts of HR in feed.  相似文献   

13.
Conjugated linoleic acid (CLA), a dietary lipid, has been proposed as an antidiabetic agent. However, studies specifically addressing the molecular dynamics of CLA on skeletal muscle glucose transport and differences between the key isomers are limited. We demonstrate that acute exposure of L6 myotubes to cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) CLA isomers mimics insulin action by stimulating glucose uptake and glucose transporter-4 (GLUT4) trafficking. Both c9,t10-CLA and t10,c12-CLA stimulate the phosphorylation of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit and Akt substrate-160 kDa (AS160), while showing isomer-specific effects on AMP-activated protein kinase (AMPK). CLA isomers showed synergistic effects with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Blocking PI3-kinase and AMPK prevented the stimulatory effects of t10,c12-CLA on AS160 phosphorylation and glucose uptake, indicating that this isomer acts via a PI3-kinase and AMPK-dependent mechanism, whereas the mechanism of c9,t11-CLA remains unclear. Intriguingly, CLA isomers sensitized insulin-Akt-responsive glucose uptake and prevented high insulin-induced Akt desensitisation. Together, these results establish that CLA exhibits isomer-specific effects on GLUT4 trafficking and the increase in glucose uptake induced by CLA treatment of L6 myotubes occurs via pathways that are distinctive from those utilised by insulin.  相似文献   

14.
Scientific research is constantly looking for new molecules to be used as functional ingredients to combat obesity. The aim of the present study was to analyse whether resveratrol and conjugated linoleic acid (CLA) together could reduce body fat more efficiently than their separate administration. Thirty-six male Wistar rats were randomly divided into four groups: controls rats (C), rats treated with resveratrol (RSV), rats treated with CLA (CLA) and rats treated with a combination of resveratrol and CLA (RSV+CLA). All rats were fed on an obesogenic diet. In RSV and RSV+CLA groups, the rats received 30 mg resveratrol/kg body weight/day. In CLA and RSV+CLA groups, an equimolecular mixture of trans-10,cis-12 and cis-9,trans-11 was added to the diet to reach 0.5% of the active isomer trans-10,cis-12. After 6 weeks of treatment, white adipose tissue from different anatomical locations was dissected and weighed. Serum triacylglycerols, total and HDL cholesterols, glucose, insulin, fructosamine and TNF-α were measured. A glucose tolerance test was also performed. Separately, resveratrol and CLA significantly reduced body fat but did not do so when combined: 20% in the RSV group and 18% in CLA group but 7% in the RSV+CLA group. Resveratrol reduced serum triacylglycerols. No differences were found among groups in serum cholesterol. Resveratrol, as well as the combination RSV+CLA, improved glycaemic control. These results demonstrate that the combination RSV+CLA reduces the effectiveness of each compound on body fat-lowering action, but it maintains the positive effect of resveratrol on glycaemic control. Consequently, this combination has no usefulness in obesity prevention.  相似文献   

15.
The substrate selectivity of numerous commercially available lipases from microorganisms, plants and animal tissue towards 9-octadecenoic acids with respect to the cis/trans configuration of the CC double bond was examined by the esterification of cis- and trans-9-octadecanoic acid (oleic and elaidic acid respectively) with n-butanol in n-hexane. A great number of lipases studied, e.g. those from Pseudomonas sp., porcine pancreas or Carica papaya, were unable to discriminate between the isomeric 9-octadecenoic acids. However, lipases from Candida cylindracea and Mucor miehei catalysed the esterification of oleic acid 3–4 times faster than the corresponding reaction of elaidic acid and therefore have a high preference for the cis isomer. Of all biocatalysts examined, only recombinant lipases from Candidaantarctica favoured elaidic acid as substrate. While the preference of Candida antarctica lipase B for the trans isomer was quite low, Candida antarctica lipase A had an extraordinary substrate selectivity and its immobilized enzyme preparation [Chirazyme L-5 (3) from Boehringer] esterified elaidic acid about 15 times faster than oleic acid. Received: 29 October 1998 / Received revision: 18 December 1998 / Accepted: 21 December 1998  相似文献   

16.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

17.
Conjugated linoleic acids (CLAs) were reported to have anti-atherogenic properties in animal feeding experiments. In an attempt to elucidate the molecular mechanisms of these anti-atherogenic effects, the modulatory potential of CLA on cytokine-induced eicosanoid production from smooth muscle cells (SMCs), which contributes to the chronic inflammatory response associated with atherosclerosis, has been investigated in the present study. cis-9, trans-11 CLA and trans-10, cis-12 CLA were shown to reduce proportions of the eicosanoid precursor arachidonic acid in SMC total lipids and to inhibit cytokine-induced NF-κB DNA-binding activity, mRNA levels of inducible enzymes involved in eicosanoid formation (cPLA2, COX-2, mPGES), and the production of the prostaglandins PGE2 and PGI2 by TNFα-stimulated SMCs in a dose-dependent manner. The effect of 50 μmol/L of either CLA isomer was as effective as 10 μmol/L of the PPARγ agonist troglitazone in terms of inhibiting the TNFα-stimulated eicosanoid production by SMCs. PPARγ DNA-binding activity was increased by both CLA isomers compared to control cells. Moreover, it was shown that the PPARγ antagonist T0070907 partially abrogated the inhibitory action of CLA isomers on cytokine-induced eicosanoid production and NF-κB DNA-binding activity by vascular SMCs suggesting that PPARγ signalling is at least partially involved in the action of CLA in human vascular SMCs. With respect to the effects of CLA on experimental atherosclerosis, our findings suggest that the anti-inflammatory effect of CLA is at least partially responsible for the anti-atherogenic effects of CLA observed in vivo.  相似文献   

18.
The potential of conjugated linoleic acid (CLA) as an anti-obesity molecule for humans is still a matter for debate. Thus, a great deal of scientific work is focussed on the research of new effective molecules without deleterious effects on health. The aim of the present work was to analyse the effects of jacaranda seed oil, rich in a conjugated linolenic acid (CLNA), jacaric acid (cis-8,trans-10,cis-12), on body fat, serum parameters and liver composition in rats, and to compare these effects with those oftrans-10,cis-12 CLA. Twenty-six male Wistar rats were divided into three groups fed with high-fat diets, supplemented or not (control group) with 0.5%trans-10,cis-12 CLA (CLA group) or 0.5% jacaric acid (CLNA group) for 7 weeks. No statistical differences in food intake or in final body weight were found. Whereas CLA reduced adipose tissue size, CLNA did not. Both CLA and CLNA significantly reduced non-HDL-cholesterol. In spite of a lack of significant changes in glucose and insulin levels, HOMA-IR index was significantly increased, as well as did non-esterified fatty acid levels in CLNA-fed rats. No changes in liver composition were observed. In conclusion, under our experimental conditions, jacaric acid, unlike CLA, does not show a body-fat lowering effect. Even though it leads to a healthy lipoprotein profile, it impairs insulin function. Consequently, it cannot be proposed as an anti-obesity molecule.  相似文献   

19.
On the basis of the potential benefits to human health there is an increased interest in producing milk containing lower-saturated fatty acid (SFA) and higher unsaturated fatty acid (FA) concentrations, including cis-9 18:1 and cis-9, trans-11-conjugated linoleic acid (CLA). Twenty-four multiparous Holstein cows were used in two experiments according to a completely randomized block design, with 21-day periods to examine the effects of incremental replacement of prilled palm fat (PALM) with sunflower oil (SFO) in high-concentrate diets containing 30 g/kg dry matter (DM) of supplemental fat (Experiment 1) or increases in the forage-to-concentrate (F : C) ratio from 39 : 61 to 48 : 52 of diets containing 30 g/kg DM of SFO (Experiment 2) on milk production, digestibility and milk FA composition. Replacing PALM with SFO had no effect on DM intake, but tended to increase organic matter digestibility, yields of milk, protein and lactose, and decreased linearly milk fat content. Substituting SFO for PALM decreased linearly milk fat 8:0 to 16:0 and cis-9 16:1, and increased linearly 18:0, cis-9 18:1, trans-18:1 (Δ4 to 16), 18:2 and CLA concentrations. Increases in the F : C ratio of diets containing SFO had no effect on intake, yields of milk, milk protein or milk lactose, lowered milk protein content in a quadratic manner, and increased linearly NDF digestion and milk fat secretion. Replacing concentrates with forages in diets containing SFO increased milk fat 4:0 to 10:0 concentrations in a linear or quadratic manner, decreased linearly cis-9 16:1, trans-6 to -10 18:1, 18:2n-6, trans-7, cis-9 CLA, trans-9, cis-11 CLA and trans-10, cis-12 CLA, without altering milk fat 14:0 to 16:0, trans-11 18:1, cis-9, trans-11 CLA or 18:3n-3 concentrations. In conclusion, replacing prilled palm fat on with SFO in high-concentrate diets had no adverse effects on intake or milk production, other than decreasing milk fat content, but lowered milk fat medium-chain SFA and increased trans FA and polyunsaturated FA concentrations. Increases in the proportion of forage in diets containing SFO increased milk fat synthesis, elevated short-chain SFA and lowered trans FA concentrations, without altering milk polyunsaturated FA content. Changes in fat yield on high-concentrate diets containing SFO varied between experiments and individual animals, with decreases in milk fat secretion being associated with increases in milk fat trans-10 18:1, trans-10, cis-12 CLA and trans-9, cis-11 CLA concentrations.  相似文献   

20.
Based on the potential benefits for long-term human health, there is interest in developing sustainable nutritional strategies for lowering medium-chain saturated fatty acids (FA) and increasing specific unsaturated FA in ruminant milk. Dietary supplements of extruded linseeds (EL), fish oil (FO) or a mixture of EL and FO increase cis-9,trans-11 CLA and long-chain n-3 polyunsaturated FA in bovine milk. Supplements of FO cause milk fat depression in lactating cows, but information for dairy goats is limited. A total of 14 Alpine goats were used in a replicated 3×3 Latin square with 28-days experimental periods to examine the effects of EL alone or in combination with FO on animal performance, milk fat synthesis and milk FA composition. Treatments comprised diets based on natural grassland hay supplemented with no additional oil (control), 530 of EL or 340 g/day of EL and 39 g/day of FO (ELFO). Compared with the control, ELFO tended (P=0.08) to lower milk fat yield, whereas EL increased (P<0.01) milk fat content and yield (15% and 10%, respectively). Relative to EL, ELFO decreased (P<0.01) milk fat content and yield (19% and 17%, respectively). Relative to the control and ELFO, EL decreased (P<0.05) milk 10:0 to 16:0 and odd- and branched-chain FA content and increased 18:0, cis-18:1, trans-13 18:1 (and their corresponding ∆-9 (desaturase products), trans-12,cis-14 CLA, cis-13,trans-15 CLA, cis-12,trans-14 CLA and trans-11,cis-13 CLA and 18:3n-3 concentrations. ELFO was more effective for enriching (P<0.05) milk cis-9, trans-11 CLA and trans-11 18:1 concentrations (up to 5.4- and 7.1-fold compared with the control) than EL (up to 1.7- and 2.5-fold increases). Furthermore, ELFO resulted in a substantial increase in milk trans-10 18:1 concentration (5.4% total FA), with considerable variation between individual animals. Relative to the control and EL, milk fat responses to ELFO were characterized by increases (P<0.05) in milk trans-16:1 (Δ9 to 11), trans-18:1 (Δ6 to 11), trans-18:2, CLA (cis-9,trans-11, trans-9,cis-11, trans-8,trans-10 and trans-7,trans-9) and 20- and 22-carbon FA concentrations. Overall, EL resulted in a relatively high cis-9 18:1 concentration and an increase in the 18:3n-3/18:2n-6 ratio, whereas combining EL and FO resulted in substantial increases in trans-FA, marginal enrichment in 20:5n-3 and 22:6n-3 and lower 16:0 concentration changes associated with a decrease in milk fat content. In conclusion, data provide further evidence of differential mammary lipogenic responses to diet in the goat compared with the cow and sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号