首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organismic concept of land plants is outlined, which is based on a synthesis of plant morphology and plant anatomy. The entire plant, the living unity, is conceived as the organism being subdivided into cells, which cannot be interpreted as organisms themselves in the sense of elementary organisms. The evolution of land plant tissue systems is discussed in the introductive chapter.To test the proposed concept, some frondose plants were selected from liverworts (Pellia epiphylla, Metzgeria furcata, Pallavicinia lyallii) and comparable fern gametophytes (Dryopteris filix mas, Vittaria lineata, Stenochlaena tenuifolia) and studied with respect to their organization and the principles of development. They all have an archetypic, two-dimensional, open construction, which is described as the repens-type of plant construction. Primary form growth occurs in the marginal blastozone, which controls cell wall integration. One of the most significant processes of form generation is blastozone fractionation. The tissues leaving the blastozone differentiate during extension growth and maturation of the vegetation body. While the plant grows continuously in the blastozone, it decays steadily in the necrozone.The implications of the two-dimensional repens-type are discussed. It appears as a perfect plant construction, fit to start plant evolution on the land surface. Growing upwards into the atmosphere, the repens-type is obscured. But is reappears in all groups of higher land plants. This demonstrates the existence of evolutionary cycles in plants. It is argued that mutation and selection do not suffice to understand cyclical evolutionary patterns. The influence of organismic construction seems to predetermine evolution because of the limited options to change an appropriately functioning construction. Via construction analysis evolutionary options can be detected and thus, evolution becomes predictable to some extent. Instead of being object of mutation and selection, living organisms should be conceived as subjects in evolution (Weingarten 1993).Dedicated to my admired teacher Professor DrWilhelm Troll on the occasion of his 100th birthday, 3rd November, 1997.  相似文献   

2.
An understanding of land plant evolution is a prerequisite for in-depth knowledge of plant biology. Here we extract and explore information hidden in the increasing number of sequenced plant genomes, from bryophytes to angiosperms, to elucidate a specific biological question—how peptide signaling evolved. To conquer land and cope with changing environmental conditions, plants have gone through transformations that must have required innovations in cell-to-cell communication. We discuss peptides mediating endogenous and exogenous changes by interaction with receptors activating intracellular molecular signaling. Signaling peptides were discovered in angiosperms and operate in tissues and organs such as flowers, seeds, vasculature, and 3D meristems that are not universally conserved across land plants. Nevertheless, orthologs of angiosperm peptides and receptors have been identified in nonangiosperms. These discoveries provoke questions regarding coevolution of ligands and their receptors, and whether de novo interactions in peptide signaling pathways may have contributed to generate novel traits in land plants. The answers to such questions will have profound implications for the understanding of the evolution of cell-to-cell communication and the wealth of diversified terrestrial plants. Under this perspective, we have generated, analyzed, and reviewed phylogenetic, genomic, structural, and functional data to elucidate the evolution of peptide signaling.

The identification of orthologs of Arabidopsis signaling peptides and their receptors in nonflowering plants suggest their importance in cell-to-cell communication in all land plants.  相似文献   

3.
The parsimony and bootstrap branching pattern of major groups of land plants derived from relevant 5S rRNA sequence trees have been discussed in the light of paleobotanical and morphological evidences. Although 5S rRNA sequence information is not useful for dileneating angiosperm relationships, it does capture the earlier phase of land plant evolution. The consensus branching pattern indicates an ancient split of bryophytes and vascular plants from the charophycean algal stem. Among the bryophytes,Marchantia andLophocolea appear to be phylogenetically close and together withPlagiomnium form a monophyletic group.Lycopodium andPsilotum arose early in vascular land plant evolution, independent of fem-sphenopsid branch. Gymnosperms are polyphyletic; conifers, Gnetales and cycads emerge in that order with ginkgo joiningCycas. Among the conifers,Metasequoia,Juniperus andTaxus emerge as a branch independent ofPinus which joins Gnetales. The phylogeny derived from the available ss-RNA sequences shows that angiosperms are monophyletic with monocots and dicots diverging from a common stem. The nucleotide replacements during angiosperm descent from the gymnosperm ancestor which presumably arose around 370 my ago indicates that monocots and dicots diverged around 180 my ago, which is compatible with the reported divergence estimate of around 200 my ago deduced from chloroplast DNA sequences. Since deceased.  相似文献   

4.
The plastid division proteins FtsZ are encoded by a small nuclear gene family in land plants. Although it has been shown for some of the gene products that they are imported into plastids and function in plastid division, the evolution and function of this gene family and their products remain to be unraveled. Here we present two new ftsZ genes from the moss Physcomitrella patens and compare the genomic structure of members of the two plant ftsZ gene families. Comparison of sequence features and phylogenetic analyses confirm the presence of two clusters of paralogues in land plants and demonstrate that these genes were duplicated before the divergence of mosses, ferns and seed plants.  相似文献   

5.
Oligotrophy, the obligate or facultative capacity to live in low‐nutrient habitats, has played a major role in the evolution of photosynthetic organisms.
  • ? Energy/carbon deficiency: evolution of photosynthesis about 3.5 Gyr (billion years) ago, then use of H2O as electron donor, and accumulation of O2 from about 2.3 Gyr ago.
  • ? Deficiency in combined N: evolution of biological N2 fixation about 2.0‐2.3 Gyr ago.
  • ? Deficiency in soluble relative to particulate organic C: evolution of phagotrophy in eukaryotes, opening the way to endosymbiotic origin of photosynthesis in eukaryotes.
  • ? Deficiency of P and Fe resulting from oxygenation: evolution of mechanisms increasing access to P and Fe.
  • ? Deficiency of H2O for land plants gaining C from the atmosphere: evolution of homoiohydry following origin of significant land flora from 0.5 Gyr ago.
  • ? Deficiency of CO2 resulting from increased weathering by land plants: evolution of large leaves.
  • ? Increased competition for resources among land plants: evolution of mechanisms economizing in use of soil‐derived resources, and increasing ability to acquire resources.
Economising on resource use in photosynthetic organisms is subject to a number of constraints. There are very limited possibilities for reducing the use of N in proteins with a given catalytic function, but greater possibilities using substitution of an analogous protein with that function. The same applies to Fe. Possibilities for economising on the use of P are very limited if the growth rate is to be maintained: the marine cyanobacterium Prochlorococcus is a good example of restricted P requirement. H2O use can be constrained by C4 and, especially, CAM photosynthesis. A possible role of the study of oligotrophy in the context of sustainable, low‐input agriculture includes modified agricultural practice to minimise losses of resources. Information on oligotrophy and its evolution can also be used to inform the alteration of crop plants by genetic modification related to resource acquisition (e.g. associative, or nodule‐based, symbiotic diazotrophy) and the economy of resource use (e.g. partial or complete conversion of a C3 crop to a C4 crop which could economise in the use of N and/or H2O). The attempts to convert C3 to C4 plants have not thus far been fully successful, and the advantages of conversion to C4 are being increasingly offset by the effect of increasing atmospheric CO2 on C3 plants. However, more success has been achieved with selection of the most appropriate diazotrophic symbionts for crop plants in particular environments.  相似文献   

6.
Isoprene emission has been documented and characterized from species in all major groups of vascular plants. We report in our survey that isoprene emission is much more common in mosses and ferns than later divergent land plants but is absent in liverworts and hornworts. The light and temperature responses of isoprene emission from Sphagnum capillifolium (Ehrh.) Hedw. are similar to those of other land plants. Isoprene increases thermotolerance of S. capillifolium to the same extent seen in higher plants as measured by chlorophyll fluorescence. Sphagnum species in a northern Wisconsin bog experienced large temperature fluctuations similar to those reported in tree canopies. Since isoprene has been shown to help plants cope with large, rapid temperature fluctuations, we hypothesize the thermal and correlated dessication stress experienced by early land plants provided the selective pressure for the evolution of light-dependent isoprene emission in the ancestors of modern mosses. As plants radiated into different habitats, this capacity was lost multiple times in favor of other thermal protective mechanisms.  相似文献   

7.
在对上海市树附生藻类的调查中,发现了1个中国新记录属——绿叠球藻属(Chlorokybus)。对该属1个新记录种绿叠球藻(Chlorokybus atmophyticus)的主要形态学特征进行了详细描述,对其系统位置讨论结果认为,绿叠球藻是一个比较特殊的藻类,在陆生植物演化上具有特殊的地位,支持将其作为一个独立的目——绿叠球藻目(Chlorokybales)处理。  相似文献   

8.
Land plants possess some of the most unusual mitochondrial genomes among eukaryotes. However, in early land plants these genomes resemble those of green and red algae or early eukaryotes. The question of when during land plant evolution the dramatic change in mtDNAs occurred remains unanswered. Here we report the first completely sequenced mitochondrial genome of the hornwort, Megaceros aenigmaticus, a member of the sister group of vascular plants. It is a circular molecule of 184,908 base pairs, with 32 protein genes, 3 rRNA genes, 17 tRNA genes, and 30 group II introns. The genome contains many genes arranged in the same order as in those of a liverwort, a moss, several green and red algae, and Reclinomonas americana, an early-branching eukaryote with the most ancestral form of mtDNA. In particular, the gene order between mtDNAs of the hornwort and Physcomitrella patens (moss) differs by only 8 inversions and translocations. However, the hornwort mtDNA possesses 4 derived features relative to green alga mtDNAs—increased genome size, RNA editing, intron gains, and gene losses—which were all likely acquired during the origin and early evolution of land plants. Overall, this genome and those of other 2 bryophytes show that mitochondrial genomes in early land plants, unlike their seed plant counterparts, exhibit a mixed mode of conservative yet dynamic evolution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Libo Li and Bin Wang contributed equally to this work.  相似文献   

9.
Sequencing the plastid genomes of land plants provides crucial improvements to our understanding of the plastome evolution of land plants. Although the number of available complete plastid genome sequences has rapidly increased in the recent years, only a few sequences have been yet released for the three bryophyte lineages, namely hornworts, liverworts, and mosses. Here, we explore the disparity of the plastome structure of liverworts by increasing the number of sequenced liverwort plastomes from five to 18. The expanded sampling included representatives of all major lineages of liverworts including the genus Haplomitrium. The disparity of the liverwort genomes was compared with other 2386 land plant plastomes with emphasis on genome size and GC‐content. We found evidence for structural conservatism of the plastid genomes in liverworts and a trend towards reduced plastome sequence length in liverworts and derived mosses compared to other land plants, including hornworts and basal lineages of mosses. Furthermore, Aneura and Haplomitrium were distinct from other liverworts by an increased GC content, with the one found in Haplomitrium only second to the lycophyte Selaginella. The results suggest the hypothesis that liverworts and other land plants inherited and conserved the plastome structure of their most recent algal ancestors.  相似文献   

10.
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.  相似文献   

11.

Background  

The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens.  相似文献   

12.
Generally, soils in Pakistan are deficient in P and N. Due to intensive cropping and irrigation, Pakistani soils have also become deficient in micronutrients such as Zn, Fe, Cu, and Mn. Arbuscular mycorrhizal fungi, which form symbiotic associations with roots of most land plants, are known to enhance uptake of P and trace elements such as Cu, Ni, Pb, and Zn. The present study was conducted to investigate the role of arbuscular mycorrhizae (AM) in uptake of nickel (Ni) and zinc (Zn) by crops viz. soybean (Glycine max (L.) Merrill) and lentil (Lens culinaris Medic). Zn and Ni were applied as ZnSO4 7H2O and NiCl2 respectively, in four concentrations (0.0, 1.0, 3.0, and 5.0 g kg-1 soil). AM inoculum consisted of sand containing sporocarps, spores, and AMF infected root pieces from a pot culture of Glomus mosseae. Control plants received pot culture filtrate containing soil microflora minus AM fungal propagules. A significant difference (p < 0.05) was observed in the dry weights of roots and shoots of the mycorrhizal (M) and nonmycorrhizal (NM) cereal plants. The sievate-amended treatments did not stimulate plant growth to the same extent as the AM fungal amended treatments. Trace metals inhibited the extent of mycorrhizal colonization of the cereal roots. The concentrations of the trace metals in the plant tissues of 12-week old cereal plants were found significantly (p < 0.05) higher in M than NM plants. These results indicate that mycorrhize can be used as effective tools to supply sufficient Zn in generally Zn-deficient Pakistani soils and to ameliorate the toxicity of trace metals in polluted soils. The contents of Ni in mycorrhizal soybean plant tissues were higher than those in the mycorrhizal lentil plant tissues. The implications of these results in mycorrhizo remediation of agricultural soils are discussed.  相似文献   

13.
Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.  相似文献   

14.
A cladistic analysis was carried out to resolve phylogenetic pattern among bryophytes and other land plants. The analysis used 22 taxa of land plants and 90 characters relating to male gametogenesis.Coleochaete orChara/Nitella were the outgroups in various analyses using HENNIG86, PAUP, and MacClade, and the land plant phylogeny was unchanged regardless of outgroup utilized. The most parsimonious cladograms from HENNIG86 (7 trees) have treelengths of 243 (C.I. = 0.58, R.I. = 0.82). Bryophytes are monophyletic as are hornworts, liverworts, and mosses, with hornworts identified as the sister group of a liverwort/moss assemblage. In vascular plants, lycophytes are polyphyletic andSelaginella is close to the bryophytes.Lycopodium is the sister group of the remaining vascular plants (minusSelaginella). Longer treelengths (over 250) are required to produce tree topologies in which either lycophytes are monophyletic or to reconstruct the paraphyletic bryophyte phylogeny of recent authors. This analysis challenges existing concepts of bryophyte phylogeny based on more classical data and interpretations, and provides new insight into land plant evolution.  相似文献   

15.

Background  

DNA-dependent RNA polymerase IV and V (Pol IV and V) are multi-subunit enzymes occurring in plants. The origin of Pol V, specific to angiosperms, from Pol IV, which is present in all land plants, is linked to the duplication of the gene encoding the largest subunit and the subsequent subneofunctionalization of the two paralogs (NRPD1 and NRPE1). Additional duplication of the second-largest subunit, NRPD2/NRPE2, has happened independently in at least some eudicot lineages, but its paralogs are often subject to concerted evolution and gene death and little is known about their evolution nor their affinity with Pol IV and Pol V.  相似文献   

16.

Background  

The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum.  相似文献   

17.
DEK1, the single calpain of land plants, is a member of the ancient membrane bound TML–CysPc–C2L calpain family that dates back 1.5 billion years. Here we show that the CysPc–C2L domains of land plant calpains form a separate sub‐clade in the DEK1 clade of the phylogenetic tree of plants. The charophycean alga Mesostigma viride DEK1‐like gene is clearly divergent from those in land plants, suggesting that a major evolutionary shift in DEK1 occurred during the transition to land plants. Based on genetic complementation of the Arabidopsis thaliana dek1‐3 mutant using CysPc–C2L domains of various origins, we show that these two domains have been functionally conserved within land plants for at least 450 million years. This conclusion is based on the observation that the CysPc–C2L domains of DEK1 from the moss Physcomitrella patens complements the A. thaliana dek1‐3 mutant phenotype. In contrast, neither the CysPc–C2L domains from M. viride nor chimeric animal–plant calpains complement this mutant. Co‐evolution analysis identified differences in the interactions between the CysPc–C2L residues of DEK1 and classical calpains, supporting the view that the two enzymes are regulated by fundamentally different mechanisms. Using the A. thaliana dek1‐3 complementation assay, we show that four conserved amino acid residues of two Ca2+‐binding sites in the CysPc domain of classical calpains are conserved in land plants and functionally essential in A. thaliana DEK1.  相似文献   

18.
Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.  相似文献   

19.
Summary Cells of the charophycean alga,Coleochaete scutata active in cell wall formation were freeze fractured in the search for cellulose synthesizing complexes (TCs) since this alga is considered to be among the most advanced and a progenitor to land plant evolution. We have found a new TC which consists of two geometrically distinctive particle complexes complementary to one another in the plasma membrane and occasionally associated with microfibril impressions. In the E-fracture face is found a cluster of 8–50 closely packed particles, each with a diameter of 5–17 nm. Most of these particles are confined within an 80 nm circle. In the P-fracture face is found an 8-fold symmetrical arrangement of 10 nm particles circumferentially arranged around a 28 nm central particle. The TCs ofC. scutata are quite distinctive from the rosette/globule TCs of land plants. The 5.5×3.1 nm microfibril inC. scutata is also distinctive from the 3.5×3.5 nm microfibril typical of land plants. The phylogenetic implications of this unique TC in land plant evolution are discussed.  相似文献   

20.
The nucleotide sequence of cytoplasmic 5S ribosomal RNAs from three gymnosperms,Pinus contorta, Taxus baccata andJuniperus media and from one fern,Pteridium aquilinum, have been determined. These sequences were aligned with all hitherto known cytoplasmic 5S ribosomal RNA sequences of photosynthetic eukaryotes. A dendrogram based on that set of sequences was constructed by a distance matrix method and the resulting tree compared with established views concerning plant and algal evolution. The following monophyletic groups of photosynthetic eukaryotes are recognizable: theRhodophyta, a group consisting ofPhaeophyta, Bacillariophyta andChrysophyta, and the green plants, the latter comprising green algae,Bryophyta, Pteridophyta andSpermatophyta. According to our 5S ribosomal RNA tree, green plants may have originated from some type of a green flagellated organism such asChlamydomonas. The land plants seem to have originated from some form of charophyte such asNitella. 5S ribosomal RNA seems to be less appropriate to estimate dissimilarities between species which have diverged relatively recently, like the angiosperms. Therefore, a precise evolutionary process is difficult to reconstruct for members of this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号