首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Codon bias is generally thought to be determined by a balance between mutation, genetic drift, and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. In this paper, I study associations between codon usage, gene expression, and molecular evolution at synonymous and nonsynonymous sites in the long-lived, woody perennial plant Populus tremula (Salicaceae). Using expression data for 558 genes derived from expressed sequence tags (EST) libraries from 19 different tissues and developmental stages, I study how gene expression levels within single tissues as well as across tissues affect codon usage and rates sequence evolution at synonymous and nonsynonymous sites. I show that gene expression have direct effects on both codon usage and the level of selective constraint of proteins in P. tremula, although in different ways. Codon usage genes is primarily determined by how highly expressed a genes is, whereas rates of sequence evolution are primarily determined by how widely expressed genes are. In addition to the effects of gene expression, protein length appear to be an important factor influencing virtually all aspects of molecular evolution in P. tremula.  相似文献   

2.
Akashi H  Ko WY  Piao S  John A  Goel P  Lin CF  Vitins AP 《Genetics》2006,172(3):1711-1726
Although mutation, genetic drift, and natural selection are well established as determinants of genome evolution, the importance (frequency and magnitude) of parameter fluctuations in molecular evolution is less understood. DNA sequence comparisons among closely related species allow specific substitutions to be assigned to lineages on a phylogenetic tree. In this study, we compare patterns of codon usage and protein evolution in 22 genes (>11,000 codons) among Drosophila melanogaster and five relatives within the D. melanogaster subgroup. We assign changes to eight lineages using a maximum-likelihood approach to infer ancestral states. Uncertainty in ancestral reconstructions is taken into account, at least to some extent, by weighting reconstructions by their posterior probabilities. Four of the eight lineages show potentially genomewide departures from equilibrium synonymous codon usage; three are decreasing and one is increasing in major codon usage. Several of these departures are consistent with lineage-specific changes in selection intensity (selection coefficients scaled to effective population size) at silent sites. Intron base composition and rates and patterns of protein evolution are also heterogeneous among these lineages. The magnitude of forces governing silent, intron, and protein evolution appears to have varied frequently, and in a lineage-specific manner, within the D. melanogaster subgroup.  相似文献   

3.
鉴于遗传密码子的简并性能够将基因遗传信息的容量提升,同义密码子使用偏嗜性得以在生物体的基因组中广泛存在。虽然同义密码子之间碱基的变化并不能导致氨基酸种类的改变,在研究mRNA半衰期、编码多肽翻译效率及肽链空间构象正确折叠的准确性和翻译等这一系列过程中发现,同义密码子使用的偏嗜性在某种程度上通过精微调控翻译机制体现其遗传学功能。同义密码子指导tRNA在翻译过程中识别核糖体的速率变化是由氨基酸的特定顺序决定,并且在新生多肽链合成时,蛋白质共翻译转运机制同时调节其空间构象的正确折叠从而保证蛋白的正常生物学功能。某些同义密码子使用偏嗜性与特定蛋白结构的形成具有显著相关性,密码子使用偏嗜性一旦改变将可能导致新生多肽空间构象出现错误折叠。结合近些年来国内外在此领域的研究成果,阐述同义密码子使用偏嗜性如何发挥精微调控翻译的生物学功能与作用。  相似文献   

4.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

5.
Dong Yang  Ying Jiang  Fuchu He 《遗传学报》2009,36(11):645-651
Genome sequencing opened the flood gate of "-omics" studies, among which the research about correlations between genomic and phenomic variables is an important part. With the development of functional genomics and systems biology, genome-wide investigation of the correlations between many genomic and phenomic variables became possible. In this review, five genomic variables, such as evolution rate (or "age" of the gene), the length of intron and ORF (protein length) in one gene, the biases of amino acid composition and codon usage, along with the phenomic variables related to expression patterns (level and breadth) are focused on. In most cases, genes with higher mRNA/protein expression level tend to evolve slowly, have less intronic DNA, code for smaller proteins, and have higher biases of amino acid composition and codon usage. In addition, broadly expressed proteins evolve more slowly and are shorter than tissue-specific proteins. Studies in this field are helpful for deeper understanding the signatures of selection mediated by the features of gene expression and are of great significance to enrich the evolution theory.  相似文献   

6.
Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we implement a few population genetics models of codon substitution that explicitly consider mutation bias and natural selection at the DNA level. Selection on codon usage is modeled by introducing codon-fitness parameters, which together with mutation-bias parameters, predict optimal codon frequencies for the gene. The selective pressure may be for translational efficiency and accuracy or for fine-tuning translational kinetics to produce correct protein folding. We apply the models to compare mitochondrial and nuclear genes from several mammalian species. Model assumptions concerning codon usage are found to affect the estimation of sequence distances (such as the synonymous rate d(S), the nonsynonymous rate d(N), and the rate at the 4-fold degenerate sites d(4)), as found in previous studies, but the new models produced very similar estimates to some old ones. We also develop a likelihood ratio test to examine the null hypothesis that codon usage is due to mutation bias alone, not influenced by natural selection. Application of the test to the mammalian data led to rejection of the null hypothesis in most genes, suggesting that natural selection may be a driving force in the evolution of synonymous codon usage in mammals. Estimates of selection coefficients nevertheless suggest that selection on codon usage is weak and most mutations are nearly neutral. The sensitivity of the analysis on the assumed mutation model is discussed.  相似文献   

7.
Rao Y  Wu G  Wang Z  Chai X  Nie Q  Zhang X 《DNA research》2011,18(6):499-512
Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.  相似文献   

8.
Despite the degeneracy of the genetic code, whereby different codons encode the same amino acid, alternative codons and amino acids are utilized nonrandomly within and between genomes. Such biases in codon and amino acid usage have been demonstrated extensively in prokaryote genomes and likely reflect a balance between the action of mutation, selection, and genetic drift. Here, we quantify the effects of selection and mutation drift as causes of codon and amino acid-usage bias in a large collection of nematode partial genomes from 37 species spanning approximately 700 Myr of evolution, as inferred from expressed sequence tag (EST) measures of gene expression and from base composition variation. Average G + C content at silent sites among these taxa ranges from 10% to 63%, and EST counts range more than 100-fold, underlying marked differences between the identities of major codons and optimal codons for a given species as well as influencing patterns of amino acid abundance among taxa. Few species in our sample demonstrate a dominant role of selection in shaping intragenomic codon-usage biases, and these are principally free living rather than parasitic nematodes. This suggests that deviations in effective population size among species, with small effective sizes among parasites, are partly responsible for species differences in the extent to which selection shapes patterns of codon usage. Nevertheless, a consensus set of optimal codons emerges that is common to most taxa, indicating that, with some notable exceptions, selection for translational efficiency and accuracy favors similar sets of codons regardless of the major codon-usage trends defined by base compositional properties of individual nematode genomes.  相似文献   

9.
自然界中,同义密码子的存在使得众多氨基酸能够同时被多种密码子编码合成。随着研究的深入,同义密码子使用偏嗜性发挥出的生物学功能已经渗透到了基因复制、转录、翻译以及化学修饰等生命活动过程中。基于同义密码子使用偏嗜性的生物学特性,陆续发现密码子对(codon pair)和密码子共现(codon co-occurrence)同样在使用模式上存在明显的偏嗜性。在基因表达的过程中,针对编码序列的密码子优化能够显著提升基因的表达水平,这在生物工程领域对于蛋白表达有着重要的生物学意义。此外,同义密码子使用模式在调控基因转录、化学修饰以及翻译过程中间接控制着细胞内生命活动的有序性。而这些与同义密码子使用模式有着千丝万缕联系的生命过程主要是受精微翻译选择压力来调控运行的。本文中,我们结合当前同义密码子使用模式介导的精微翻译选择压力,简述密码子使用模式如何从转录、化学修饰以及翻译等方面来影响基因表达及蛋白产物生物学功能。这将为今后生物工程学领域如何优化蛋白高效表达以及深入研究重要生物学活动中基因表达调控提供可参考的思路与理念。  相似文献   

10.
McVean GA  Vieira J 《Genetics》2001,157(1):245-257
Selection acting on codon usage can cause patterns of synonymous evolution to deviate considerably from those expected under neutrality. To investigate the quantitative relationship between parameters of mutation, selection, and demography, and patterns of synonymous site divergence, we have developed a novel combination of population genetic models and likelihood methods of phylogenetic sequence analysis. Comparing 50 orthologous gene pairs from Drosophila melanogaster and D. virilis and 27 from D. melanogaster and D. simulans, we show considerable variation between amino acids and genes in the strength of selection acting on codon usage and find evidence for both long-term and short-term changes in the strength of selection between species. Remarkably, D. melanogaster shows no evidence of current selection on codon usage, while its sister species D. simulans experiences only half the selection pressure for codon usage of their common ancestor. We also find evidence for considerable base asymmetries in the rate of mutation, such that the average synonymous mutation rate is 20-30% higher than in noncoding regions. A Bayesian approach is adopted to investigate how accounting for selection on codon usage influences estimates of the parameters of mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号