首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 146 毫秒
1.
2.
We investigated the effects of therapeutic hypothermia (30 degrees C) on alterations in constitutive (cNOS) and inducible (iNOS) nitric oxide synthase activities following traumatic brain injury (TBI). Male Sprague-Dawley rats were anesthetized with 0.5% halothane and underwent moderate (1.8-2.2 atm) parasagittal fluid-percussion (F-P) brain injury. In normothermic rats (37 degrees C) the enzymatic activity of cNOS was significantly increased at 5 min within the injured cerebral cortex compared with contralateral values (286.5+/-68.9% of contralateral value; mean+/-SEM). This rise in nitric oxide synthase activity was significantly reduced with pretraumatic hypothermia (138.8+/-17% of contralateral value; p < 0.05). At 3 and 7 days after normothermic TBI the enzymatic activity of cNOS was decreased significantly (30+/-8.4 and 28.6+/-20.9% of contralateral value, respectively; p < 0.05). However, immediate posttraumatic hypothermia (3 h at 30 degrees C) preserved cNOS activity at 3 and 7 days (69.5+/-23.3 and 78.6+/-7.6% of contralateral value, respectively; mean+/-SEM; p < 0.05). Posttraumatic hypothermia also significantly reduced iNOS activity at 7 days compared with normothermic rats (0.021+/-0.06 and 0.23+/-0.06 pmol/mg of protein/min, respectively; p < 0.05). The present results indicate that hypothermia (a) decreases early cNOS activation after TBI, (b) preserves cNOS activity at later periods, and (c) prevents the delayed induction of iNOS. Temperature-dependent alterations in cNOS and iNOS enzymatic activities may participate in the neuroprotective effect of hypothermia in this TBI model.  相似文献   

3.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH‐d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

4.
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.  相似文献   

5.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH-d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   

6.
7.
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelinating disease. We examined the pathogenic roles of nitric oxide (NO) and inducible NO synthase (iNOS) in TMEV-induced demyelinating disease (TMEV-IDD). The presence of iNOS was confirmed in the spinal cords of TMEV-infected mice using immunohistochemical staining with anti-iNOS antibody on day 0 (control) and days 15, 30, 60, and 120. Aminoguanidine (AG), a specific inhibitor of iNOS, was injected intraperitoneally (ip) on 1, 3, 5, 8, 10, and 12 days post-TMEV inoculation as induction phase or 15, 17, 19, 22, 24, and 26 days as effector phase. Control animals in each experiment received phosphate-buffered saline (PBS) ip at similar time intervals. Few iNOS-positive cells were observed in the spinal cords of naive SJL/J mice. In the early phase (day 15) of TMEV-IDD, an increase of iNOS-positive cells was detected in the leptomeninges and perivascular space of the spinal cords. The number of iNOS-positive cells was increased and reached its peak on day 60, when histology of the animals showed peak infiltration with inflammatory cells. The clinical course of TMEV-IDD on each day postintracerebral infection was significantly reduced in mice treated with AG in the effector phase, and there was no significant difference between mice treated with AG in induction phase versus those administered PBS. Thus, NO production via iNOS appears to be a pathogenic factor in the effector phase of TMEV-IDD.  相似文献   

8.
Naringin is neuroprotective in ischemia and other disease models. However, the effects of naringin are unknown after traumatic brain injury (TBI). The present study explored the role of naringin for neuroprotection in TBI rats. TBI was performed with the weight drop technique, and naringin was given orally at a dose of 100 mg/kg/day. The neurological scores, tissue edema, and oxidative stress/inflammation parameters [malondialdehyde (MDA), superoxide dismutase, nitric oxide, inducible nitric oxide synthase (iNOS), as well as interleukin-1β (IL-1β)] were measured. Compared to sham controls, TBI rats displayed obvious sensorimotor dysfunction, significant brain edema, and elevated oxidative and inflammatory molecules. Although a 7-day pre-treatment of naringin was unable to reverse these pathological changes, a 14-day continual treatment (7 days before and 7 days after the TBI) attenuated the increases in MDA and nitric oxide; enhanced the activation of superoxide dismutase; depressed the over-activation of iNOS; down-regulated the over-expression of IL-1β; and reduced the cortex edema. Additionally, the TBI-induced behavioral dysfunction was reduced. These results suggest that naringin treatment can attenuate cellular and histopathological alterations and improve the sensorimotor dysfunction of TBI rats, which may be partly due to the attenuation of oxidative and inflammatory damages.  相似文献   

9.
Borna disease virus (BDV) is a negative-strand RNA virus which produces persistent infection in a variety of experimental animals. In the rat, the presence or absence of clinical signs of Borna disease, a characteristic, biphasic neurobehavioral illness, depends on host-related factors. A window of opportunity exists after birth wherein inoculation with BDV produces a persistently infected rat without signs of Borna disease or encephalitis (persistent, tolerant infection-newborn [PTI-NB] rat). Although immunopathological destruction of the nervous system does not occur in the PTI-NB rat, significant alterations in the development of the nervous system were noted, including site-specific lysis of neurons. Unlike the case with other pharmacologically produced, persistent, tolerant BDV infections, adoptive transfer of spleen cells from BDV-infected rats did not produce disease in the PTI-NB rats. PTI-NB rats developed Borna disease after being connected by parabiosis to rats with Borna disease. Bone marrow transplantation experiments revealed that bone marrow cells from PTI-NB rats produced Borna disease in lethally irradiated, BDV-infected recipient rats. Bone marrow from PTI-NB rats contained a complement of inflammatory cells capable of inducing Borna disease. Thus, the loss of BDV-specific cellular immunity appeared to occur after the release of cells from the bone marrow.  相似文献   

10.
The role of islet constitutive nitric oxide synthase (cNOS) in insulin-releasing mechanisms is controversial. By measuring enzyme activities and protein expression of NOS isoforms [i.e., cNOS and inducible NOS (iNOS)] in islets of Langerhans cells in relation to insulin secretion, we show that glucose dose-dependently stimulates islet activities of both cNOS and iNOS, that cNOS-derived nitric oxide (NO) strongly inhibits glucose-stimulated insulin release, and that short-term hyperglycemia in mice induces islet iNOS activity. Moreover, addition of NO gas or an NO donor inhibited glucose-stimulated insulin release, and different NOS inhibitors effected a potentiation. These effects were evident also in K+-depolarized islets in the presence of the ATP-sensitive K+ channel opener diazoxide. Furthermore, our results emphasize the necessity of measuring islet NOS activity when using NOS inhibitors, because certain concentrations of certain NOS inhibitors might unexpectedly stimulate islet NO production. This is shown by the observation that 0.5 mmol/l of the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) stimulated cNOS activity in parallel with an inhibition of the first phase of glucose-stimulated insulin release in perifused rats islets, whereas 5.0 mmol/l of L-NMMA markedly suppressed cNOS activity concomitant with a great potentiation of the insulin secretory response. The data strongly suggest, but do not definitely prove, that glucose indeed has the ability to stimulate both cNOS and iNOS in the islets and that NO might serve as a negative feedback inhibitor of glucose-stimulated insulin release. The results also suggest that hyperglycemia-evoked islet NOS activity might be one of multiple factors involved in the impairment of glucose-stimulated insulin release in type II diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号