首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
N. REKHIF, A ATRIH AND G. LEFEBVRE. 1995. Plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6, exhibited an inhibitory action against several mesophilic lactobacilli. It was stable at 90–100°C at pH 2–4 and it remained stable in the presence of several organic solvents, urea or β-mercaptoethanol. Plantaricin SA6 bound specifically to the cell surface of only plantaricin SA6-sensitive bacteria. The putative receptors are not destroyed by different hydrolytic enzymes added to the phosphate buffer. Plantaricin SA6 acted as a bactericidal agent lysing sensitive strains, that became more permeable to ortho-nitro-phenol-β-galactoside and lost their intracellular K+ ions and u.v.-absorbing materials. Both the adsorption and lethal action of plantaricin SA6 were maximal between pH 4 and 7, but the range of temperature tested (5–37βC) had no effect. Ions (of several salts such as MgCl2) inhibited the binding of plantaricin SA6 and protected cells against bacteriocin action.  相似文献   

2.
Lactobacillus plantarum 423, isolated from sorghum beer, produces a bacteriocin (plantaricin 423) which is inhibitory to several food spoilage bacteria and food-borne pathogens, including Bacillus cereus , Clostridium sporogenes , Enterococcus faecalis , Listeria spp. and Staphylococcus spp. Plantaricin 423 is resistant to treatment at 80 °C, but loses 50% of its activity after 60 min at 100 °C and 75% of its activity after autoclaving (121 °C, 15 min). Plantaricin 423 remains active after incubation at pH 1–10 and is inactivated when treated with pepsin, papain, α-chymotrypsin, trypsin and Proteinase K. Plantaricin 423 was partially purified and its size estimated at 3·5 kDa, as determined by tricine-SDS-PAGE. The mechanism of activity of plantaricin 423 is weakly bactericidal, as determined against Oenococcus oeni (previously Leuconostoc oenos ). High DNA homology was obtained between the plasmid DNA of strain 423 and the pediocin PA-1 operon of Pediococcus acidilactici PAC 1·0, suggesting that plantaricin 423 is plasmid-encoded and related to the pediocin gene cluster.  相似文献   

3.
A protease-sensitive antibacterial substance, produced by a strain of Lactobacillus plantarum isolated from fermented corn, was classified as a bacteriocin and designated plantaricin KW30. The bacteriocin was stable to heat, pH and treatment with surfactants, and unaffected by α-amylase, lipase or lysozyme. Plantaricin KW30 exhibited a bactericidal and non-bacteriolytic mode of action against indicator cells, and inhibitory activity was limited to other lactobacilli. Maximum production was in MRS broth, and coincided with the onset of stationary phase under conditions of low pH and high cell numbers. In a complex medium bacteriocin production was enhanced by the presence of sodium acetate and Tween 80. Curing experiments gave derivatives that no longer produced the bacteriocin but retained immunity to it. These Bac derivatives showed the same plasmid pattern as the parent strain suggesting a chromosomal location for the genes for bacteriocin production.  相似文献   

4.
Twenty-six strains of Lactobacillus plantarum isolated from green olive fermentations were tested for cross-antagonistic activities in an agar drop diffusion test. Cell-free supernatants from four of these strains were shown to inhibit the growth of at least one of the L. plantarum indicator strains. L. plantarum LPCO10 provided the broadest spectrum of activity and was selected for further studies. The inhibitory compound from this strain was active against some gram-positive bacteria, including clostridia and propionibacteria as well as natural competitors of L. plantarum in olive fermentation brines. In contrast, no activity against gram-negative bacteria was detected. Inhibition due to the effect of organic acids, hydrogen peroxide, or bacteriophages was excluded. Since the inhibitory activity of the active supernatant was lost after treatment with various proteolytic enzymes, this substance could be classified as a bacteriocin, designated plantaricin S. Plantaricin S was also sensitive to glycolytic and lipolytic enzymes, suggesting that it was a glycolipoprotein. It exhibited a bactericidal and nonbacteriolytic mode of action against indicator cells. This bacteriocin was heat stable (60 min at 100 degrees C), active in a pH range of 3.0 to 7.0, and also stable in crude culture supernatants during storage. Ultrafiltration studies indicated that plantaricin S occurred as multimolecular aggregates and that the size of the smallest active form is between 3 and 10 kDa. In sodium dodecyl sulfate-polyacrylamide gels, plantaricin S migrated as a peptide of ca. 2.5 kDa. Maximum production of plantaricin S was obtained in a fermentor system in unregulated pH and log-phase cultures of L. plantarum LPCO10 in MRS broth plus 4% NaCl. In these culture conditions, a second bacteriocin (designated plantaricin T) was produced in late-stationary-phase cultures of L. plantarum LPCO10. On the basis of its biological activity, its sensitivity to various enzymes, and its molecular weight (lower than that of plantaricin S) as assessed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, plantaricin T appeared different from plantaricin S. Curing experiments with L. plantarum LPCO10 resulted in the appearance of variants that no longer produced either of the two bacteriocins but that were still immune to both of them.  相似文献   

5.
Homo- and heterofermentative species of Lactobacillus have been isolated from sugary kefir grains. Most of the homofermentative strains fermented tagatose and aldonitol and presented 48–54% of homology with Lactobacillus paracasei ssp. paracasei NCDO 151 (ex Lactobacillus casei ). The two variants of a heterofermentative species, although fermenting arabinose, were related to Lactobacillus hilgardii NCDO 264 (type strain) with 88% of homology. One of them produced polysaccharide from sucrose at pH 4–8 and 30°C; the best glucose conversion into polysaccharide was obtained from 3% of sucrose (81–8%), and the maximum production occurred about 35 hours after the end of the log phase of growth, in MRS sucrose broth. Polysaccharide formation did not occur above 40°C, a temperature at which no growth was observed. The two variants were forming minicells by abnormal divisions.  相似文献   

6.
植物乳杆菌ZJ316生产细菌素   总被引:6,自引:0,他引:6  
[目的]研究植物乳杆菌ZJ316生长和产细菌素的最佳培养基成分和发酵条件,以提高该菌产plantaricin ZJ316的能力.[方法]改变培养基成份和发酵条件,考察不同氮源、碳源等培养基成分和不同的发酵温度等条件对ZJ316生长和产细菌素的影响.[结果]最佳培养基为MRS培养基;优化后的培养基配方为葡萄糖10 g/L,麦芽糖10 g/L,酵母提取物10 g/L,蛋白胨10 g/L,柠檬酸三铵2 g/L,吐温80为1 Ml/L,K2HPO4·3H2O 6 g/L,乙酸钠5 g/L,硫酸镁0.2 g/L,硫酸锰0.05 g/L.培养基初始Ph6.5,30℃静置培养24 h.[结论]通过培养基成分和发酵条件的优化,细菌素产量提高了2.3倍,为进一步研究和规模化生产奠定基础.  相似文献   

7.
In this paper, we investigated the production of plantaricin 423, produced by Lactobacillus plantarum 423 in both MRS broth and partially deproteinated MRS with Amberlite XAD-1180. Improved production of plantaricin 423 was observed in MRS broth pre-treated with Amberlite XAD-1180. Precipitation of plantaricin with ammonium sulphate, followed by gel filtration chromatography and subsequent analysis on a modified tricine-SDS PAGE, significantly increased the yield and purity of plantaricin 423. This paper describes a novel method to partially deproteinate growth medium in order to facilitate bacteriocin purification.  相似文献   

8.
Culture growth conditions were optimized for adhesion to hexadecane of the probiotic Bifidobacterium bifidum HI 39 and HI 48. Among three growth media used, MILS lactose broth was the best medium to obtain maximum cell adhesion, followed by MRS and TPY lactose broth for B. bifidum HI 39 and HI 48. Increasing the incubation time from 6 to 18 h resulted in a gradual increase in percentage adhesion at 37 °C of both organisms in MILS, MRS and TPY media. Thereafter, incubation up to 48 h showed a marked reduction in adhesion of B. bifidum HI 39 and B. bifidum HI 48. When the test cultures were grown at pH values from 5.0 to 8.0 in MILS lactose broth at 37 °C for 18 h, there was a gradual enhancement in cell adhesion up to pH 7.0; but higher pH values retarded the bacterial adhesion. The study showed that the optimum conditions for adhesion to hexadecane of the selected bifidobacterial strains were pH 7.0 and incubation at 37 °C for 18 h in MILS broth.  相似文献   

9.
Lactobacillus plantarum BFE 905 isolated from 'Waldorf' salad produced a bacteriocin termed plantaricin D which was active against Lact. sake and Listeria monocytogenes strains. Plantaricin D was heat stable, retaining activity after heating at 121 °C. The bacteriocin was inactivated by α-chymotrypsin, trypsin, pepsin and proteinase K, but not by papain and other non-proteolytic enzymes tested. Plantaricin D was stable at pH values ranging from 2·0 to 10·0. The bacteriocin inhibited growth of L. monocytogenes in automated turbidity assays. Although Lact. plantarum BFE 905 harboured plasmids ranging in size from 3 to 55 kilobase pairs, loss of bacteriocin production could not be correlated with plasmid loss. A role for bacteriocin-producing Lact. plantarum of vegetable origin in assuring the safety of vegetable foods is suggested.  相似文献   

10.
Growth of Listeria monocytogenes at refrigeration temperatures   总被引:1,自引:1,他引:0  
The growth of three strains of Listeria monocytogenes at refrigeration temperatures (-0.5 to 9.3°C) in chicken broth and/or UHT milk was determined using a rocking temperature gradient incubator. Minimum growth temperatures ranged from -0.1 to -0.4°C for the three strains. Lag times of 1–3 d and 3 to >34 d were observed with incubation at 5 and 0°C respectively. Corresponding generation times ranged from 13–24 h at 5°C and 62–131 h at 0°C. The type of culture medium had an influence on both the rate and extent of growth. Incubation of cultures at 4°C before inoculation caused a marked reduction in the lag time when compared with cultures which had been previously incubated at 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号