首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
HennigdividedInsectas.lat.(=Hexapoda)intotwowelldefinedtaxonomicgroups:Entog-nathaandEctognatha[1].ThemostdistinctivecharacterofEntognatha(includingProtura,Col-lembolaandDiplura)liesintheenclosedmouthpartscondition,whereasthepresenceofexposedmouthpartsisthemainfeatureofEctognatha(includingMicrocoryphia,Zygentomaandtheptery-goteinsects).ControversiesaboutthephylogeneticrelationshipsofhightaxaEntognathahavekeptgrowinginrecentyears,withthemonophylyofDipluraandthephylogeneticpositionsofDiplur…  相似文献   

2.
The phylogenetic interrelationships among four hexapod lineages (Protura, Collembola, Diplura and Insecta) are pivotal to understanding the origin of insects and the early diversification of Hexapoda, but they have been difficult to clarify based on the available data. In this study, we identified 91 conserved microRNA (miRNA) families from 36 panarthropod taxa, including seven newly sequenced non-insect hexapods. We found major clade differentiation accompanied by the origin of novel miRNA families, and most miRNA clusters are conserved with a high degree of microsynteny. Importantly, we were able to identify two miRNA families unique to Hexapoda, and four miRNA families and a miRNA cluster that exist exclusively in Diplura and Insecta, suggesting a close relationship between Diplura and Insecta as well as the monophyly of Hexapoda. Combined with a phylogenetic analysis based on the presence/absence matrix of miRNA families, our study demonstrates the effectiveness of miRNA in resolving deep phylogenetic problems.  相似文献   

3.
The present analyses employ the almost complete sequence of the 28S rRNA gene to investigate phylogenetic relationships among Pancrustacea, placing special emphasis on the position of basal hexapod lineages. This study utilizes a greater number of characters and taxa of Protura, Collembola and Diplura than previous analyses to focus on conflicts in the reconstruction of the early steps in hexapod evolution. Phylogenetic trees are mainly based on Bayesian approaches, but likewise include analyses with Maximum Likelihood and Maximum Parsimony. Different analyses, including the application of a mixed DNA/RNA substitution model, were performed to narrow possible misleading effects of non-stationarity of nucleotide frequencies, saturation and character independence down to a minimum. This is the first time that a mixed DNA/RNA model is applied to analyse 28S rRNA sequences of basal hexapods. All methods yielded strong support for the monophyly of Collembola, Diplura, Dicondylia and Insecta s.str. , as well as for a cluster composed of Diplura and Protura ('Nonoculata-hypothesis'). However, the last cluster may be an artifact caused by a shared GC bias of the 28S sequences between these orders, in combination with a long branch effect. The instability of the position of the 'Nonoculata' within Pancrustacea further bears out the misleading effect of non-stationarity of nucleotide frequencies. Protura and Diplura either form the sister-group to Collembola (Entognatha) or cluster with branchiopod crustaceans. Overall, the phylogenetic signal of the complete sequences of the 28S rRNA gene favours monophyly of Hexapoda over paraphyly. However, further corroboration from independent data is needed to rule out the competing hypothesis of mutually paraphyletic Crustacea and Hexapoda.  相似文献   

4.
Hexapoda includes 33 commonly recognized orders, most of them insects. Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects. Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups. Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma. Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis. Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses.  相似文献   

5.
Arthropoda is comprised of four major taxa: Hexapoda, Crustacea, Myriapoda and Chelicerata. Although this classification is widely accepted, there is still some debate about the internal relationships of these groups. In particular, the phylogenetic position of Collembola remains enigmatic. Some molecular studies place Collembola into a close relationship to Protura and Diplura within the monophyletic Hexapoda, but this placement is not universally accepted, as Collembola is also regarded as either the sister group to Branchiopoda (a crustacean taxon) or to Pancrustacea (crustaceans + hexapods). To contribute to the current debate on the phylogenetic position of Collembola, we examined the brains in three collembolan species: Folsomia candida, Protaphorura armata and Tetrodontophora bielanensis, using antennal backfills, series of semi-thin sections, and immunostaining technique with several antisera, in conjunction with confocal laser scanning microscopy and three-dimensional reconstructions. We identified several neuroanatomical structures in the collembolan brain, including a fan-shaped central body showing a columnar organization, a protocerebral bridge, one pair of antennal lobes with 20-30 spheroidal glomeruli each, and a structure, which we interpret as a simply organized mushroom body. The results of our neuroanatomical study are consistent with the phylogenetic position of Collembola within the Hexapoda and do not contradict the hypothesis of a close relationship of Collembola, Protura and Diplura.  相似文献   

6.
The classification of taxa within Collembola (Springtails, Hexapoda) has been controversial. In this study, we combined complete 18S rRNA gene with partial 28S rRNA gene (D7-D10) sequences to investigate the phylogeny of Collembola. About 2500 aligned sites of thirty species representing 29 genera from14 families of Collembola were analyzed, including one species of Neelipleona from which no sequence has been reported previously.The phylogenetic trees were obtained by different methods (maximum parsimony, maximum likelihood, and Bayesian analysis). Our results supported the monophyly of two of the four taxonomic groups of Collembola summarized by Deharveng [Deharveng, L., 2004. Recent advances in Collembola systematics. Pedobiologia 48, 415–433.], namely of Poduromorpha and of Symphypleona. Within Poduromorpha, Neanuridae was monophyletic with high support, but Hypogastruridae was not. Entomobryomorpha was paraphyletic, as the Tomoceroidea (Tomoceridae and Oncopoduridae) was found to be apart from the other entomobryomorphs. In the latter Isotomoidea and Entomobryoidea joined into a group with moderate support. Within Symphypleona, the phylogenetic relationship [(Sminthuridae + Bourletiellidae) + Sminthurididae] was consistent with traditional morphological studies. Neelipleona grouped with Symphypleona in all trees, with moderate support in the ML and Bayesian analyses.  相似文献   

7.
This study combined complete 18S with partial 28S ribosomal RNA gene sequences ( approximately 2,000 nt in total) to investigate the relations of basal hexapods. Ten species of Protura, 12 of Diplura, and 10 of Collembola (representing all subgroups of these three clades) were sequenced, along with 5 true insects and 8 other arthropods, which served as out-groups. Trees were constructed with maximum parsimony, maximum likelihood, Bayesian analysis, and minimum-evolution analysis of LogDet-transformed distances. All methods yielded strong support for a clade of Protura plus Diplura, here named Nonoculata, and for monophyly of the Diplura. Parametric-bootstrapping analysis showed our data to be inconsistent with previous hypotheses (P < 0.01) that joined Protura with Collembola (Ellipura), that said Diplura are sister to true insects or are diphyletic, and that said Collembola are not hexapods. That is, our data are consistent with hexapod monophyly and Collembola grouped weakly with "Protura + Diplura" under most analytical conditions. As a caveat to the above conclusions, the sequences showed nonstationarity of nucleotide frequencies across taxa, so the CG-rich sequences of the diplurans and proturans may have grouped together artifactually; however, the fact that the LogDet method supported this group lessens this possibility. Within the basal hexapod groups, where nucleotide frequencies were stationary, traditional taxonomic subgroups generally were recovered: i.e., within Protura, the Eosentomata and Acerentomata (but Sinentomata was not monophyletic); within Collembola, the Arthropleona, Poduromorpha, and Entomobryomorpha (but Symphypleona was polyphyletic); and in Diplura, the most complete data set (> 2,100 nt) showed monophyly of Campodeoidea and of Japygoidea, and most methods united Projapygoidea with Japygoidea.  相似文献   

8.
有关节肢动物分类的几个问题   总被引:12,自引:3,他引:9  
本文简要讨论了近年来有关节肢动物特别是昆虫高级分类研究中争论较大的几个关键问题,包括节肢动物的分类基础、“单肢亚门Uniramia”的单系性、六足总纲的单系性及昆虫纲(狭义)Insecta s.str.的范围等,以期引起我国动物学者的注意与重视。  相似文献   

9.
低等六足动物包括原尾纲、弹尾纲和双尾纲三个类群,是探讨六足动物起源和进化问题的关键类群,近十年来成为节肢动物系统进化研究中的焦点之一。低等六足动物的系统发育地位以及它们之间的关系一直是备受争论的问题。通过介绍三类低等六足动物最新的分类系统,从经典分类学和系统发育两个方面对低等六足动物近十年来的研究进展进行了综述。迄今,对于三类低等六足动物都建立了比较完备的分类体系,原尾纲划分为3目10科,弹尾纲划分为4目30科,双尾纲划分为2亚目3总科10科。系统发育研究中,大多数的系统发育分析结果不支持传统的缺尾类假说,缺尾纲应摒弃不用。分子数据分析的结果普遍支持原尾纲与双尾纲近缘,但仍需要进一步探讨。线粒体基因组、比较胚胎学和比较精子学的研究结果表明,原尾纲可能经历了长期的趋异进化历史。最近的比较精子学研究支持了双尾纲的单系性。总之,三类低等六足动物系统学研究均取得了长足的发展,但仍然存在诸如研究人员匮乏和研究水平不均衡等问题。系统发育研究中,分子系统学研究成为关注的焦点,而基于核基因和线粒体基因的数据分别建立的系统发育假说存在分歧,亟需开发更优的数据分析方法。此外,需加强低等六足动物比较形态学、比较胚胎学、发育生物学等方面的研究,以便将来进行全证据的系统发育研究。  相似文献   

10.
We use fragments of three nuclear genes (Histone 3, 18SrDNA, and 28SrDNA) and three mitochondrial genes (16SrDNA, ND1, and COI) totalling approximately 4.5kb, in addition to morphological data, to estimate the phylogenetic relationships among Anelosimus spiders, well known for their sociality. The analysis includes 67 individuals representing 23 of the 53 currently recognized Anelosimus species and all species groups previously recognized by morphological evidence. We analyse the data using Bayesian, maximum likelihood, and parsimony methods, considering the genes individually as well as combined (mitochondrial, nuclear, and both combined) in addition to a 'total evidence' analysis including morphology. Most of the data partitions are congruent in agreeing on several fundamental aspects of the phylogeny, and the combined molecular data yield a tree broadly similar to an existing morphological hypothesis. We argue that such congruence among data partitions is an important indicator of support that may go undetected by standard robustness estimators. Our results strongly support Anelosimus monophyly, and the monophyly of the recently revised American 'eximius lineage', although slightly altered by excluding A. pacificus. There was consistent support for the scattering of American Anelosimus species in three clades suggesting intercontinental dispersal. Several recently described species are reconstructed as monophyletic, supporting taxonomic decisions based on morphology and behaviour in this taxonomically difficult group. Corroborating previous results from morphology, the molecular data suggest that social species are scattered across the genus and thus that sociality has evolved multiple times, a significant finding for exploring the causes and consequences of social evolution in this group of organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号