首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
好氧甲烷氧化菌生态学研究进展   总被引:10,自引:0,他引:10  
贠娟莉  王艳芬  张洪勋 《生态学报》2013,33(21):6774-6785
好氧甲烷氧化菌是一群以甲烷为碳源和能源的细菌。好氧甲烷氧化菌在自然环境中分布广泛,人类已从土壤、淡水和海洋沉积、泥炭沼泽、热泉、海水和南极环境分离到甲烷氧化菌的纯培养。好氧甲烷氧化菌可分为14个属,包括研究较为深入的隶属于变形菌门Alpha和Gamma纲的细菌,以及属于疣微菌门的极端嗜热嗜酸甲烷氧化菌。最近,好氧甲烷氧化菌还被发现存在于苔藓类植物(尤其是泥炭苔藓)共生体中,兼性营养好氧甲烷氧化菌也被发现。本文通过对好氧甲烷氧化菌的分类、生理生化特征、分子生物学检测方法以及微生物生态学中的研究成果的总结与分析,以及对甲烷氧化菌研究所面临的问题进行讨论,以期为今后进一步开展好氧甲烷氧化菌及其在碳循环中的作用研究提供参考。  相似文献   

2.
古菌(Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1],大多生活在极端或特殊环境,主要包括产甲烷古菌(Methanogenic Achaea)、极端嗜盐古菌(Extremely Halophilic Archaea)和极端嗜热古菌(Extremely Thermophilic Archaea)等三大类.极端古菌是极端环境微生物的重要成员,也是极端环境微生物资源开发的重要领域.其中,嗜盐古菌可产生一类蛋白类抗生素,称为嗜盐菌素(halocin).  相似文献   

3.
为探究酸性矿山排水生态系统不同环境中的微生物群落和功能,全面了解酸性矿山排水的形成和发展规律,采用高通量测序技术研究云南省蒙自某矿区酸矿水坑和周边溪水中的原核微生物群落组成,并结合样本理化特征分析影响群落结构的主要因素,进而解析菌群的环境功能。研究发现酸矿水坑中主要有广古菌门、变形菌门(包括α、γ和δ变形菌纲)、硝化螺菌门、厚壁菌门、放线菌门和酸杆菌门等类群,与周边溪水的群落结构具有明显差异。群落多样性与pH呈显著正相关,而热原体纲(Thermoplasmata)与pH呈负相关,可对群落结构起主导作用。酸矿水坑不同样本中均具有高丰度的亚铁原体属Ferroplasma (6.60%–86.34%),酸硫杆菌属Acidithiobacillus是酸矿水和沉积泥中主要的铁、硫氧化细菌,而专性铁氧化的钩端螺旋菌属Leptospirillum的丰度较低,铁卵形菌属Ferrovum几乎只存在于酸矿水中;此外,嗜酸或耐酸的异养菌广泛分布于酸矿水和沉积泥中,它们可促进铁、硫氧化菌的生长及催化矿石溶解。结果表明,pH通过影响微生物多样性和菌群分布而对酸性矿山排水环境微生物群落结构造成重大影响。  相似文献   

4.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

5.
嗜酸菌及其应用   总被引:7,自引:0,他引:7  
李雅琴   《微生物学通报》1998,25(3):170-172
自然界大多数环境的pH值为5~9,它适合多数微生物生长。嗜酸菌是一种能在低pH条件下生长和繁殖的极端环境微生物[‘-’],通常在pHZ~5生长很好,pHS.5以上生长不好。有些嗜酸菌在中性pH条件下根本不生长,如氧化硫硫杆菌(Thiobacillusthiootidans),酸热硫化叶菌(deghlobusacidocaldarius),酸热芽抱杆菌O沏ciousacidoca儿brius)等,最佳生长pH是2.0~3.0,这些都是专性嗜酸菌。一些真菌也能在pHS.0或更低条件下生长,实际上是耐酸菌。l嗜酸菌生态分布及其对环境适应机制嗜酸菌生长在酸性环境,这主要与硫或硫化物的存在…  相似文献   

6.
极端嗜盐古菌蛋白类抗生素——嗜盐菌素   总被引:5,自引:0,他引:5  
古菌 (Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1] ,大多生活在极端或特殊环境 ,主要包括产甲烷古菌 (MethanogenicAchaea)、极端嗜盐古菌 (ExtremelyHalophilicArchaea)和极端嗜热古菌 (ExtremelyThermophilicArchaea)等三大类。极端古菌是极端环境微生物的重要成员 ,也是极端环境微生物资源开发的重要领域。其中 ,嗜盐古菌可产生一类蛋白类抗生素 ,称为嗜盐菌素 (halocin)。与细菌素相似[2 ] ,嗜盐菌素是由质粒编码、核糖体合…  相似文献   

7.
甲烷氧化菌及其在环境治理中的应用   总被引:2,自引:0,他引:2  
魏素珍 《应用生态学报》2012,23(8):2309-2318
甲烷的生物氧化包括好氧氧化和厌氧氧化两种,分别由好氧甲烷氧化菌和厌氧甲烷氧化菌完成.由于该过程是减少自然环境中温室气体甲烷排放的重要途径,越来越受到各国学者的重视.本文主要对当前甲烷氧化菌的研究现状进行了综述,对好氧甲烷氧化菌的种类、参与氧化甲烷的关键酶,厌氧甲烷氧化菌的种类、参与的微生物菌种以及氧化机理进行了论述,并对这两类微生物在温室气体减排、污染物治理、废水生物脱氮、硫及金属元素回收等方面的应用现状及前景进行了分析.  相似文献   

8.
韩雪  陈宝明 《应用生态学报》2020,31(11):3906-3914
全球变暖已引起人们的广泛关注,大气温室效应气体浓度增加是导致全球变暖的主要因素之一,土壤是温室效应气体的主要来源。反过来,全球变暖对土壤温室气体的排放具有反馈作用。温度升高不仅会影响植物、动物、微生物的生长及其相互作用,还会影响土壤的物质(尤其是氮、碳)循环过程,从而影响土壤温室效应气体的排放。本文主要总结了增温对土壤主要温室气体N2O和CH4排放的影响及其微生物机制。总体来看,增温能够促进这两种温室气体的排放,其排放主要与温度对氨氧化细菌(AOB)、反硝化功能基因、甲烷产生菌和甲烷氧化菌的丰度和组成的影响有关。土壤温室气体排放也受到植物的物种特性、养分吸收和群落组成,以及土壤营养元素含量、含水量、pH值等理化性质的影响。未来应更深入地从微生物角度探讨全球变暖对土壤温室气体排放的反馈作用机制,加强不同增温模式对土壤温室气体排放的影响研究,并关注增温与其他环境因子相互作用对土壤温室气体排放的影响等,以期为全球变暖对土壤温室气体排放反馈作用的预测提供理论依据。  相似文献   

9.
巴丹吉林沙漠盐湖微生物多样性   总被引:4,自引:1,他引:3  
【目的】研究内蒙古巴丹吉林沙漠碱性盐湖中的原核生物多样性及其与环境因子之间的关系。【方法】利用分子生物学方法构建16S rRNA基因克隆文库,对盐湖中的嗜盐碱微生物进行系统发育分析;利用R语言绘图,对不同盐湖的微生物群落结构进行对比研究。【结果】该区域盐湖含盐量很高,矿化度达165g/L-397 g/L。同时,水体呈强碱性,p H均在10以上。三个湖的盐度和p H值等理化参数有梯度变化,因此微生物多样性和群落结构存在明显差异。整体而言,细菌的多样性大于古菌。样品中含有的主要的细菌门类为γ-变形菌亚门(Gammaproteobacteria)、拟杆菌门(Bacteroidetes)、α-变形菌亚门(Alphaproteobacteria)、厚壁菌门(Firmicutes)、疣微菌门(Verrucomicrobia),古菌则全部属于广古菌门(Euryarchaeota)中的盐杆菌科(Halobacteriaceae)。【结论】盐度是决定细菌群落结构的主要因素,古菌群落结构则由多种环境因素综合影响。一些已知的嗜盐碱菌,如Roseinatronobacter spp.、Halohasta spp.等,可以生活在比其盐度和碱度生长范围更高的极端盐碱环境中。此外,样品中还含有大量未培养的嗜盐碱细菌和古菌,对进一步开发极端盐碱环境中的微生物资源有重要意义。  相似文献   

10.
马延和 《生命世界》2007,(12):34-35
极端微生物是依赖于一种或多种极端物化因子的特殊生命形式,在100℃以上或0℃以下、近饱和的盐度、pH〉10或PH〈2等极端环境下,具有极端的生命世界,已发现的极端生命形式包括嗜热菌、嗜冷菌、嗜碱菌、嗜酸菌、嗜盐菌、嗜压菌等,统称为极端微生物,它们构成了地球生命形式的独特风景线,其存在的原理与意义为更好地认知生命现象、发展生物技术提供了宝贵的知识源泉。  相似文献   

11.
Life in the extreme: thermoacidophilic methanotrophy   总被引:3,自引:0,他引:3  
Aerobic methane-oxidizing bacteria (methanotrophs) have a key role in the global carbon cycle, converting methane to biomass and carbon dioxide. Although these bacteria have been isolated from many environments, until recently, it was not known if they survived, much less thrived in thermoacidic environments, that is, locations with pH values of approximately 1 and temperatures greater than 50 degrees C. Recently, three independent studies have isolated unusual methanotrophs from such extreme environments, expanding the known functional and phylogenetic diversity of methanotrophs.  相似文献   

12.
自然湿地土壤产甲烷菌和甲烷氧化菌多样性的分子检测   总被引:3,自引:0,他引:3  
佘晨兴  仝川 《生态学报》2011,31(14):4126-4135
自然湿地是CH4排放的重要来源之一。产甲烷菌和甲烷氧化菌是介导自然湿地甲烷循环的重要功能菌群。开展产甲烷菌和甲烷氧化菌多样性的检测研究有助于揭示微生物介导的甲烷循环以及自然湿地甲烷排放的时空异质性。传统基于培养的检测方法已被证实无法充分描述产甲烷菌和甲烷氧化菌的多样性,而分子检测方法为自然湿地土壤产甲烷菌和甲烷氧化菌的多样性检测提供了一种更准确和科学的工具。本文综述了自然湿地土壤产甲烷菌和甲烷氧化菌的定性和定量分子检测方法,包括末端限制性片段长度多态性(T-RFLP)、变性梯度凝胶电泳(DGGE)、荧光原位杂交(FISH)和实时定量PCR(real-time qPCR),重点分析了分子检测中两类重要的标记基因,总结了不同类型自然湿地产甲烷菌和甲烷氧化菌群落多样性的最新成果,提出了我国在该领域今后应深入研究探讨的一些问题及建议。  相似文献   

13.
Methane oxidation and the competition for oxygen in the rice rhizosphere   总被引:1,自引:0,他引:1  
A mechanistic approach is presented to describe oxidation of the greenhouse gas methane in the rice rhizosphere of flooded paddies by obligate methanotrophic bacteria. In flooded rice paddies these methanotrophs compete for available O(2) with other types of bacteria. Soil incubation studies and most-probable-number (MPN) counts of oxygen consumers show that microbial oxygen consumption rates were dominated by heterotrophic and methanotrophic respiration. MPN counts of methanotrophs showed large spatial and temporal variability. The most abundant methanotrophs (a Methylocystis sp.) and heterotrophs (a Pseudomonas sp. and a Rhodococcus sp.) were isolated and characterized. Growth dynamics of these bacteria under carbon and oxygen limitations are presented. Theoretical calculations based on measured growth dynamics show that methanotrophs were only able to outcompete heterotrophs at low oxygen concentrations (frequently < 5 microM). The oxygen concentration at which methanotrophs won the competition from heterotrophs did not depend on methane concentration, but it was highly affected by organic carbon concentrations in the paddy soil. Methane oxidation was severely inhibited at high acetate concentrations. This is in accordance with competition experiments between Pseudomonas spp. and Methylocystis spp. carried out at different oxygen and carbon concentrations. Likely, methane oxidation mainly occurs at microaerophilic and low-acetate conditions and thus not directly at the root surface. Acetate and oxygen concentrations in the rice rhizosphere are in the critical range for methane oxidation, and a high variability in methane oxidation rates is thus expected.  相似文献   

14.
马若潺  魏晓梦  何若 《生态学杂志》2017,28(6):2047-2054
甲烷生物氧化在全球大气甲烷平衡和温室气体的控制中起着重要作用.氧气是甲烷生物氧化过程中的重要影响因素之一.生境中氧浓度不仅影响好氧甲烷氧化菌的种群结构、活性及甲烷碳的分配,而且好氧甲烷氧化菌在不同氧浓度下具有不同的代谢途径.理解低氧生境中好氧甲烷氧化菌的缺氧耐受机理和甲烷生物氧化过程,对甲烷驱动型生态系统的碳循环和生物多样性有着重要意义.本文以好氧甲烷氧化菌为对象,综述了低氧生境中好氧甲烷氧化菌的活性及其种群结构、好氧甲烷氧化菌的缺氧耐受机理以及低氧生境中甲烷氧化菌与非甲烷氧化菌的关系,并对今后的研究方向进行了展望.  相似文献   

15.
A mechanistic approach is presented to describe oxidation of the greenhouse gas methane in the rice rhizosphere of flooded paddies by obligate methanotrophic bacteria. In flooded rice paddies these methanotrophs compete for available O2 with other types of bacteria. Soil incubation studies and most-probable-number (MPN) counts of oxygen consumers show that microbial oxygen consumption rates were dominated by heterotrophic and methanotrophic respiration. MPN counts of methanotrophs showed large spatial and temporal variability. The most abundant methanotrophs (a Methylocystis sp.) and heterotrophs (a Pseudomonas sp. and a Rhodococcus sp.) were isolated and characterized. Growth dynamics of these bacteria under carbon and oxygen limitations are presented. Theoretical calculations based on measured growth dynamics show that methanotrophs were only able to outcompete heterotrophs at low oxygen concentrations (frequently <5 μM). The oxygen concentration at which methanotrophs won the competition from heterotrophs did not depend on methane concentration, but it was highly affected by organic carbon concentrations in the paddy soil. Methane oxidation was severely inhibited at high acetate concentrations. This is in accordance with competition experiments between Pseudomonas spp. and Methylocystis spp. carried out at different oxygen and carbon concentrations. Likely, methane oxidation mainly occurs at microaerophilic and low-acetate conditions and thus not directly at the root surface. Acetate and oxygen concentrations in the rice rhizosphere are in the critical range for methane oxidation, and a high variability in methane oxidation rates is thus expected.  相似文献   

16.
Oligonucleotide probes targeting the 16S rRNA of distinct phylogenetic groups of methanotrophs were designed for the in situ detection of these organisms. A probe, MG-64, detected specifically type I methanotrophs, while probes MA-221 and MA-621, detected type II methanotrophs in whole cell hybridisations. A probe Mc1029 was also designed which targeted only organisms from the Methylococcus genus after whole cell hybridisations. All probes were labelled with the fluorochrome Cy3 and optimum conditions for hybridisation were determined. Non-specific target sites of the type I (MG-64) and type II (MA-621) probes to non-methanotrophic organisms are highlighted. The probes are however used in studying enrichment cultures and environments where selective pressure favours the growth of methanotrophs over other organisms. The application of these probes was demonstrated in the detection of type I methanotrophs with the MG-64 probe in an enrichment culture from an estuarine sample demonstrating methane oxidation. The detection of type I methanotrophs was confirmed by a 16S rDNA molecular analysis of the estuarine enrichment culture which demonstrated that the most abundant bacterial clone type in the 16S rDNA library was most closely related to Methylobacter sp. strain BB5.1, a type I methanotroph also isolated from an estuarine environment.  相似文献   

17.
甲烷氧化菌及甲烷单加氧酶的研究进展   总被引:9,自引:0,他引:9  
韩冰  苏涛  李信  邢新会 《生物工程学报》2008,24(9):1511-1519
甲烷氧化菌是以甲烷作为唯一碳源和能源进行同化和异化代谢的微生物,其关键酶之一是甲烷单加氧酶(MMOs),可以在氧气的作用下催化甲烷等低碳烷烃或烯烃羟基化或环氧化,甲烷氧化菌在自然界碳循环和工业生物技术中具有重要的应用价值.因此,近20年来对于甲烷氧化菌和MMOs的研究一直倍受生物学家的关注.以下从现代生物技术的角度,对近年来国内外在甲烷氧化菌的分类与分布,MMOs的结构与功能、甲烷氧化菌与MMOs的基因工程等方面取得的研究成果进行了总结,全面综述了甲烷氧化菌及MMOs的应用基础研究现状,并对其今后的研究和应用方向提出了展望.  相似文献   

18.
Emissions of N2O from cover soils of both abandoned (> 30 years) and active landfills greatly exceed the maximum fluxes previously reported for tropical soils, suggesting high microbial activities for N2O production. Low soil matrix potentials (<-0.7 MPa) indicate that nitrification was the most likely mechanism of N2O formation during most of the time of sampling. Soil moisture had a strong influence on N2O emissions. The production of N2O was stimulated by as much as 20 times during laboratory incubations, when moisture was increased from -2.0 MPa to -0.6 MPa. Additional evidence from incubation experiments and delta13C analyses of fatty acids (18:1) diagnostic of methanotrophs suggests that N2O is formed in these soils by nitrification via methanotrophic bacteria. In a NH3(g)-amended landfill soil, the rate of N2O production was significantly increased when incubated with 100 ppmv methane compared with 1.8 ppmv (atmospheric) methane. Preincubation of a landfill soil with 1% CH4 for 2 weeks resulted in higher rates of N2O production when subsequently amended with NH3(g) relative to a control soil preincubated without CH4. At one location, at the soil depth (9-16 cm) of maximum methane consumption and N2O production, we observe elevated concentrations of organic carbon and nitrogen and distinct minima in delta15N (+1.0%) and delta13C (-33.8%) values for organic nitrogen and organic carbon respectively. A delta13C value of -39.3% was measured for 18:1 carbon fatty acids in this soil, diagnostic of type II methanotrophs. The low delta15N value for organic nitrogen is consistent with N2 fixation by type II methanotrophs. These observations all point to a methanotrophic origin for the organic matter at this depth. The results of this study corroborate previous reports of methanotrophic nitrification and N2O formation in aqueous and soil environments and suggest a predominance of type II rather than type I or type X methanotrophs in this landfill soil.  相似文献   

19.
Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1–20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density—OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 μmol/L CH4/mL/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号