首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
There are many situations in which grain distributions resulting from in situ hybridization of radioactively labeled probes to unique genes should be subjected to a statistical analysis. However, the problems posed by analysis of in situ hybridization data are not straightforward, and no completely satisfying method is currently available. We have developed a procedure in which the major and any number of minor site(s) of hybridization may be specifically located and the significance of each tested. This Zmax procedure first tests the overall distribution for departure from randomness and then identifies significantly overlabeled whole chromosomes (or chromosome arms or other large segments), a process that may be repeated to pinpoint significantly overlabeled regions within these chromosomes. We describe in detail the derivation of the Zmax statistic, present tables of significant Zmax levels, and show with examples how Zmax is used in tests of significance of in situ hybridization data.  相似文献   

2.
We describe an easy and reproducible procedure that utilizes trypsin/EDTA for the induction of chromosome banding in conjunction with in situ hybridization. The high quality banding resolution required for grain localization is obtained on both elongated and contracted chromosomes derived from synchronized or nonsynchronized human lymphocytes or fibroblasts. This procedure can also be useful for gene localization on chromosomes from cancer cells.  相似文献   

3.
The identification of flow-sorted chromosomes is a very important tool for checking the purity of the fractions obtained. An easy and reproducible method for obtaining G-banded chromosomes with good resolution of bands is described. Also, we are able to show that the percentage of chromosomes which can be clearly distinguished by this procedure depends to a large extent on the duration of mitotic arrest. In particular when sorting chromosomes from human-rodent hybrid cell lines, the possibility of using in situ hybridization in addition to conventional staining techniques to characterize the chromosomes can help overcome the problem of highly condensed chromosomes and chromosomal fragments of unknown origin, which cannot be identified otherwise. Thus, we have developed an in situ hybridization technique, based on biotin-labelled human genomic DNA, which allows a clear distinction between human and rodent chromosomal material to be made.  相似文献   

4.
Summary The cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes with high specificity to individual chromosomes (chromosomes 3, 11, 17, 18, and X) were in situ hybridized to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms of hybridization intensity with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences provided the evidence for a high resolution power of the in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes has a variable amount of alphasatellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as a new general approach to analysis of chromosome heteromorphisms in man.  相似文献   

5.
We have established a method for amplifying and obtaining large quantities of chromosome-specific DNA by linker/adaptor ligation and polymerase chain reaction (PCR). Small quantities of DNA isolated from flow cytometry-sorted chromosomes 17 and 21 were digested with MboI, ligated to a linker/adaptor, and then subjected to 35 cycles of PCR. Using this procedure, 20 micrograms of chromosome-specific DNA can be obtained. Southern blot analysis using several DNA probes previously localized to chromosomes 17 and 21 indicated that these gene sequences were present in the amplified chromosome-specific DNA. A small quantity of the chromosome-specific DNA obtained from the first round of PCR amplification was used to amplify DNA for a second, third, and fourth round of PCR (30 cycles), and specific DNA sequences were still detectable. Fluorescence in situ hybridization using these chromosome-specific DNA probes clearly indicated the hybridization signals to the designated chromosomes. We showed that PCR-amplified chromosome 17-specific DNA can be used to detect nonrandom chromosomal translocation of t(15;17) in acute promyelocytic leukemia by fluorescence in situ hybridization.  相似文献   

6.
A procedure is described for quinacrine banding of radiolabeled metaphase chromosomes for autoradiography. The chromosomes can be labeled either in vivo or by in situ hybridization. The banding procedure involves treating the slides with RNase and formamide and staining in quinacrine. The slides are then processed for autoradiography. After development of the photoemulsion, the chromosomes can be karyotyped with UV light by their fluorescent banding patterns and the silver grains overlaying the chromosomes can be demonstrated by the addition of tungsten light. It is possible by careful manipulation of the visible light to simultaneously observe both fluorescent bands and silver grains. This technique should significantly increase the accuracy of chromosome identification after autoradiography and decrease the time and effort required for such analysis.  相似文献   

7.
In situ hybridization and immunocytochemical procedures are described which allow identification and localization of specific DNA sequences in human chromosomes by fluorescence microscopy. With this method the genes coding for 18S and 28S ribosomal RNA (rRNA) were localized on human metaphase chromosomes by in situ hybridization of 18S or 28S rRNA followed by an immunocytochemical incubation with specific anti-RNA-DNA hybrid antiserum. Visualization of the immunocytochemically localized RNA-DNA hybrids was achieved by indirect immuno-fluorescence. The antiserum against RNA-DNA hybrid molecules was raised in a rabbit injected with poly(rA)-poly(dT). The specificity of the sera was determined using a model system of Sephadex beads to which various nucleic acids had been coupled. To obtain optimal specific fluorescence and very low aspecific background staining, several modifications of the in situ hybridization and the immunocytochemical procedures were investigated. The use of aminoalkylsilane-treated glass slides, removal of unbound fluorochrome molecules from the fluorochromelabelled antibody solutions and application of a proteinase K treatment during the hybridization procedure and the immunocytochemical procedure proved to be essential for optimal results.  相似文献   

8.
Cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes of high specificity to individual chromosomes (chromosomes 3, 11, 17, 18 and X) were hybridized in situ to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in definite heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The significant interindividual differences in relative copy number of alpha-satellite DNA have been detected. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms, as shown by intensity of hybridization with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences gives evidence for a high resolution power of in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes is variable for amount of alpha-satellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as novel general approach to analysis of chromosome heteromorphisms in man.  相似文献   

9.
Sequential chromosome banding and in situ hybridization analysis.   总被引:28,自引:0,他引:28  
J Jiang  B S Gill 《Génome》1993,36(4):792-795
Different combinations of chromosome N- or C-banding with in situ hybridization (ISH) or genomic in situ hybridization (GISH) were sequentially performed on metaphase chromosomes of wheat. A modified N-banding-ISH/GISH sequential procedure gave best results. Similarly, a modified C-banding - ISH/GISH procedure also gave satisfactory results. The variation of the hot acid treatment in the standard chromosome N- or C-banding procedures was the major factor affecting the resolution of the subsequent ISH and GISH. By the sequential chromosome banding - ISH/GISH analysis, multicopy DNA sequences and the breakpoints of wheat-alien translocations were directly allocated to specific chromosomes of wheat. The sequential chromosome banding- ISH/GISH technique should be widely applicable in genome mapping, especially in cytogenetic and molecular mapping of heterochromatic and euchromatic regions of plant and animal chromosomes.  相似文献   

10.
F Dong  J M McGrath  J P Helgeson  J Jiang 《Génome》2001,44(4):729-734
Genomic in situ hybridization (GISH) is one of the most popular and effective techniques for detecting alien chromatin introgressed into breeding lines; however, GISH analysis alone does not reveal the genetic identity of the alien chromosomes. We previously isolated a set of bacterial artificial chromosomes (BACs) specific to each of the 12 potato chromosomes. These BAC clones can be used as chromosome-specific cytogenetic DNA markers (CSCDMs) for potato chromosome identification. Here we demonstrate that GISH and fluorescence in situ hybridization (FISH), using CSCDMs, can be performed sequentially on the same chromosome preparations. Somatic metaphase chromosomes prepared using an enzymatic digestion and "flame-drying" procedure allows repeated probing up to five times without significant damage to chromosome morphology. The sequential GISH and FISH analyses reveal the genomic origin and genetic identity of the alien chromosomes in a single experiment and also determine whether an alien chromosome has been added to the genetic background of potato or is substituting for a homoeologous potato chromosome. The sequential GISH and FISH procedures should be widely applicable for germplasm characterization, especially in plant species with small-sized chromosomes.  相似文献   

11.
H H Heng  G Liu  W Lu  S Bremer  C J Ye  M Hughes  P Moens 《Génome》2001,44(2):293-298
The spectral karyotyping procedure of in situ hybridization with chromosome-specific probes assigns a unique colour code to each of the 21 mouse mitotic chromosomes. We have adapted this procedure to meiotic prophase chromosomes, and the results show that each of the pachytene or metaphase I bivalents can be identified. This technique has the potential to recognize synaptic anomalies and chromosome-specific structural and behavioural characteristics. We confirm these potentials by the recognition of the heterologous synapsis of the X and Y chromosomes and by the variances of synaptonemal complex lengths for each of the colour-coded bivalents in eight prophase nuclei.  相似文献   

12.
We describe here the production of complex libraries enriched in sequences from each human chromosome type, starting with only a few thousand sorter-purified chromosomes. In this procedure, DNA is extracted from the sorted chromosomes, digested to completion by using the frequently cutting restriction endonuclease Sau3A1, and ligated, on each end, to an adaptor oligonucleotide. These fragments are then amplified using PCR with a sequence homologous to the adaptor oligonucleotide as a primer. We have used this procedure to produce PCR libraries for each of the 24 human chromosomes. These libraries were characterized by gel electrophoresis and found to be composed of a continuum of sequences ranging in size from a few hundred to approximately 1,000 bp. The libraries, when used as probes for fluorescence in situ hybridization, stained the target chromosomes more or less continuously, even after PCR amplification for more than 200 cycles. These libraries are useful as hybridization probes to facilitate molecular cytogenetic studies and as sources of probes either for identification of polymorphic short tandemly repeated sequences or for development of sequence-tagged sites.  相似文献   

13.
An improved primed in situ labeling (PRINS) procedure that provides fast, highly sensitive, and nonradioactive cytogenetic localization of chromosome-specific tandem repeat sequences is presented. The PRINS technique is based on the sequence-specific annealing in situ of unlabeled DNA. This DNA then serves as primer for chain elongation in situ catalyzed by a DNA polymerase. If biotin-labeled nucleotides are used as substrate for the chain elongation, the hybridization site becomes labeled with biotin. The biotin is subsequently made visible through the binding of FITC-labeled avidin. Tandem repeat sequences may be detected in a few hours with synthetic oligonucleotides as primers, but specific labeling of single chromosomes is not easily obtained. This may be achieved, however, if denatured double-stranded DNA fragments from polymerase-chain-reaction products or cloned probes are used as primers. In the latter case, single chromosome pairs are stained with a speed and ease (1 h reaction and no probe labeling) that are superior to traditional in situ hybridization. Subsequent high-quality Q banding of the chromosomes is also possible. The developments described here extends the range of applications of the PRINS technique, so that it now can operate with any type of probe that is available for traditional in situ hybridization.  相似文献   

14.
It is demonstrated that either general staining of the centromeric regions of all primate chromosomes, or selective staining of the centromeric region of specific chromosomes, may be obtained in preparations of metaphase chromosomes by probing specifically for different regions within the alpha satellite DNA monomer. In order to exploit observed patterns of sequence variation within the monomer for this purpose, we have developed two new DNA analysis methods. In PRimed IN Situ labelling (PRINS), synthetic oligonucleotides derived from subsections of the monomer are hybridized to the chromosomes. The oligonucleotides then serve as primers for the in situ incorporation of biotin-labelled nucleotides catalysed by Klenow polymerase. Incorporated biotin is visualized with fluorescein isothiocyanate-labelled avidin (FITC-avidin). In Primed Amplification Labelling (PAL), biotin-labelled hybridization probes are produced in a polymerase chain reaction (PCR, Saiki et al. 1985), in which two synthetic oligonucleotide primers anneal within the same monomer. With the right choice of primers libraries of labelled probes derived from most monomers present as templates are produced. If DNA from a specific chromosome is used as template, then the resulting probe mixture gives stronger and more chromosome-specific signals in in situ hybridization experiments than does a cloned alpha satellite DNA probe derived from the same chromosome. The results obtained indicate that the alpha-repeat monomer is composed of regions with different degrees of chromosome specificity.  相似文献   

15.
We confirmed the occurrence of the insect TTAGG telomeric repeats in the mealybug Planococcus lilacinus, a radiation-resistant coccid, by single primer polymerase chain reaction (PCR) and Southern hybridization. Analysis of Bal31 nuclease-digested DNA by Southern hybridization and chromosomes by FISH suggests that these repeats occur mainly at the ends of the chromosomes. However, sequence analysis of the PCR products of TTAGG-associated sequences from genomic DNA showed their interstitial occurrence and association with certain unrelated low-copy repeats. Because of their shorter length, the interstitial TTAGG sequences were detectable by primed in situ hybridizations but not by FISH. Analysis of chromosomes recovered after irradiation by fluorescent in situ hybridization suggested acquisition of TTAGG repeats at a majority of the healed ends. We also observed mild telomerase activity in unirradiated insects which was further enhanced after irradiation. Taken together, these results suggest that the mealybug has an efficient mechanism of formation of TTAGG repeats at radiation-induced chromosome ends and constitutively active telomerase may be a feature associated with rapid recovery of chromosome ends damaged by ionizing radiation.  相似文献   

16.
17.
D1S1, a human anonymous DNA clone originally called lambda Ch4A-H3 or lambda H3, was mapped by two other laboratories to human chromosome 1p36 by in situ hybridization but its localization was not confirmed using a different mapping method. We used a panel of human-hamster somatic cell hybrids to show that there are copies of D1S1 on both chromosomes 1 and 3. The D1S1 clone itself is from chromosome 3, and part of it is duplicated at least twice on chromosome 1. A high frequency HindIII polymorphism detected by D1S1, believed to be at chromosome 1p36 on the basis of the in situ hybridization data, maps instead to chromosome 3. This finding demonstrates the importance of using two mapping methods to verify the localization of a gene or DNA segment, particularly a polymorphic one which itself may be used in mapping studies. It also raises the question of why in situ hybridization detected a duplicated portion of a clone but not the chromosomal origin of the clone itself.  相似文献   

18.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

19.
Prohibition is a recently identified antiproliferative protein whose exact role in the cell is under investigation. To determine the human chromosomal location of the prohibition gene (PHB) and whether this site corresponds to that of any suspected tumor suppressor gene, we have analyzed DNA from three sources by hybridization analysis: mouse--human hybrid cell lines, hybrid cell lines containing portions of human chromosomes, and human metaphase chromosomes in situ. All three techniques confirm a location in the region 17q21-q22, a region genetically linked to early-onset human breast cancer. Further analysis will be required to establish the significance of this relationship; Southern hybridizations show a polymorphic EcoRI site that may be useful for this purpose.  相似文献   

20.
Using a procedure involving stepwise hybridization of alpha-satellite DNA probes at various conditions of stringency, 33 marker chromosomes from 27 patients were identified. The markers were ascertained prenatally in fetal amniotic fluid and chorionic villi samples or postnatally in blood from liveborn children. The marker chromosomes first were characterized by cytogenetic techniques and later identified by fluorescence in situ hybridization. There were 14 bisatellited markers, 3 metacentric nonsatellited marker chromosomes, 2 nonsupernumerary sex-chromosomal rings, and 9 patients carrying markers that appeared to be small rings. Multiple stringency conditions were used for the identification of 14 supernumerary ringlike chromosomes detected in 8 patients. Ring-like markers were initially screened at low stringency and grouped into alpha-satellite families. Subsequent higher stringency hybridization led to marker identification. Ringlike chromosomes originated from chromosomes 1, 2, 8, 12, 13 or 21, 14 or 22, 15, 18, and X. Multiple ringlike markers ascertained in a single patient were determined to originate from different chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号