首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Small mammal species richness and relative abundance vary along elevational gradients, but there are different patterns that exist. This study reports the patterns of distribution and abundance of small mammals along the broader elevational gradient of Mt. Qilian range. Location The study was conducted in the Mt. Qilian range, north‐western China, from June to August 2001. Methods Removal trapping was conducted using a standardized technique at 7 sites ranging between 1600 and 3900 m elevation within three transects. Correlation, regression and graphical analyses were used to evaluate the diversity patterns along this elevational gradient. Results In total, 586 individuals representing 18 nonvolant small mammal species were collected during 20 160 trap nights. Species composition was different among the three transects with 6 (33%) of the species found only within one transect. Elevational distribution and relative abundance of small rodents showed substantial spatial variation, with only 2 species showing nonsignificant capture frequencies across elevations. Despite these variations, some general patterns of elevational distribution emerged: humped‐shape relationships between species diversity and elevation were noted in all three transects with diversity peaks at middle elevations. In addition, relative abundance was negatively correlated with elevation. Conclusions Results indicate that maximum richness and diversity of nonvolant small mammals occurred at mid‐elevations where several types of plants reached their maximum diversity and primary productivity, and where rainfall and humidity reached a maximum. It is demonstrated that the mid‐elevation bulge is a general feature of at least a large portion of the biota on the Mt. Qilian range.  相似文献   

2.
3.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

4.
Aim We studied pteridophyte species richness between 100 m and 3400 m along a Neotropical elevational gradient and tested competing hypotheses for patterns of species richness. Location Elevational transects were situated at Volcán Barva in the Braulio Carrillo National Park and La Selva Biological Station (100–2800 m) and Cerro de la Muerte (2700–3400 m), both on the Atlantic slope of Costa Rica, Central America. Method We analysed species richness on 156 plots of 20 × 20 m and measured temperature and humidity at four elevations (40, 650, 1800 and 2800 m). Species richness patterns were regressed against climatic variables (temperature, humidity, precipitation and actual evapotranspiration), regional species pool, area and predicted species number of a geometric null model (the mid‐domain effect, MDE). Results The species richness of the 484 recorded species showed a hump‐shaped pattern with elevation with a richness peak at mid‐elevations (c. 1700 m). The MDE was the single most powerful explanatory variable in linear regression models, but species richness was also associated strongly with climatic variables, especially humidity and temperature. Area and species pool were associated less strongly with observed richness patterns. Main conclusions Geometric models and climatic models exclusive of geometric constraints explained comparable amounts of the elevational variation in species richness. Discrimination between these two factor complexes is not possible based on model fits. While overall fits of geometric models were high, large‐ and small‐ranged species were explained by geometric models to different extents. Species with narrow elevational ranges clustered at both ends of the gradient to a greater extent than predicted by the MDE null models used here. While geometric models explained much of the pattern in species richness, we cannot rule out the role of climatic factors (or vice versa) because the predicted peak in richness from geometric models, the empirical peak in richness and the overlap in favourable environmental conditions all coincide at middle elevations. Mid‐elevations offer highest humidity and moderate temperatures, whereas at high elevations richness is reduced due to low temperatures, and at low elevations by reduced water availability due to high temperatures.  相似文献   

5.
The Nevados del Aconquija (5500 m) and Cumbres Calchaquíes (4600 m) are isolated mountain ranges that contain at least three physiognomic units in their eastern slopes: Neotropical rainforests, Andean grasslands and High Andean Steppes. Despite phytogeographical similarities, the two ranges differ in the amount and spatial distribution of rainfall over the elevation gradient. We studied terrestrial small mammals by direct trapping in two altitudinal transects on the eastern slope of the two mountain ranges. We recorded the changes in richness and species composition, as well as the relationships between species and microhabitats at each altitudinal level. The results show a similar structure of the small mammal assemblage in the two ranges. The largest differences, in terms of species composition, were registered at lower elevation forests, and faunal affinities increased with elevation to the point of finding identical species composition at the top of the mountains. Species richness showed a clear curvilinear pattern with a peak at the upper limit of the forests. Our findings suggest that total rainfall has an important influence on the composition and abundance of small mammal species but apparently not on the species richness along the elevation gradient. The highest values of species richness were observed at the sites where a contact between two different physiognomic units exists. These results indicate that habitat heterogeneity plays an important role in allowing the juxtaposition of small terrestrial mammal assemblages of the highlands and lowlands at a given point, contributing significantly to the considerable diversity of species observed in intermediate altitudinal sites.
  相似文献   

6.
Aim The decrease in species richness with increasing elevation is a widely recognized pattern. However, recent work has shown that there is variation in the shape of the curve, such that both negative monotonic or unimodal patterns occur, influenced by a variety of factors at local and regional scales. Discerning the shape of the curve may provide clues to the underlying causes of the observed pattern. At regional scales, the area of the altitudinal belts and mass effects are important determinants of species richness. This paper explores the relationship between bird species richness, elevation, mass effects and area of altitudinal zones for birds in tropical mountains. Location The three Andean ranges of Colombia and the peripheral mountain ranges of La Macarena and Santa Marta. Methods Lists of bird species were compiled for altitudinal belts in eastern and western slopes of the three Andean Cordilleras and for La Macarena and Santa Marta. The area of the altitudinal belts was computed from digital elevation models. The effect of area was analysed by testing for differences among altitudinal belts in the slopes and intercepts of the species‐area relationships. Mass effects were explored by separately analysing two sets of species: broadly distributed species, i.e. lowland species whose distributions extend into the Andes, and tropical Andean species, i.e., species that evolved in the Andes. Results Plotting total number of species in each altitudinal belt revealed a decline in species richness with elevation. In slopes with a complete elevational gradient from lowlands to mountain peaks, the decrease was monotonic. In internal Andean slopes where the lower elevational belts are truncated, there was a peak at mid elevations. There was a linear relationship between number of species and area of the altitudinal belts. When controlling for area, there were no differences in the number of species among altitudinal belts (500–2600 m), except for the two upper‐elevation zones (2600–3200 and > 3200 m), which had lower species richness. Diversity of widely distributed species declined monotonically with elevation, whereas tropical Andean species exhibited a mid‐elevation peak. Main conclusions A large proportion of the variation in species richness with elevation was explained by area of the altitudinal belts. When controlling for area, species richness remained constant up to 2600 m and then decreased. This pattern contrasts with a previously reported hump‐shaped pattern for Andean birds. Diversity patterns of widely distributed species suggested that immigration of lowland species inflates diversity of lower elevational belts through mass effects. This influence was particularly evident in slopes with complete altitudinal gradients (i.e. connected to the lowlands). Tropical Andean species, in contrast, were more diverse in mid‐elevational belts, where speciation rates are expected to be higher. The influence of these species was more prevalent in internal Andean slopes with no connection to the lowlands. The decline of species richness at high elevations may be related to higher extinction rates and lower resource levels.  相似文献   

7.
Hon-Tsen  Yu 《Journal of Zoology》1994,234(4):577-600
The elevational distribution of small mammals was surveyed by three transects during 1989–90 at Yushan National Park in subtropical central Taiwan. As a result of this survey, a sample of 1205 animals was obtained. Based on the sample, the sampling regime and elevational distribution of these species is reported with consideration of the spatial and temporal components. To detect the presence of all species and to estimate their relative abundances at any elevational site, one must trap consecutively for a minimum of five days.'Trap competition'is common in trap lines, resulting in a few traps being responsible for all the captures. Besides, common and rare species at each elevation have different trap responses. The elevational distribution of small mammals shows substantial seasonal and spatial variation. Furthermore, the plant succession is demonstrated to influence the species composition and relative abundances of the small mammal community at the same elevation. Despite the variation, some general patterns of elevational distribution emerge. Tamiops muritimus occurs above 2000 m and is common at 2000–3000 m. Apodemus semotus is widely distributed from 1400 to 3700 m, but becomes rare below 1500 m and above 3600 m. The congeneric A. ugrurius is known only from lowlands in Taiwan and reaches no higher than 1000 m. Niviventer culturutus occurs at about 2000–3000 m, whereas N. coxingi occurs no higher than 2000 m and is common below 1300 m. Two species of microtine also show replacement in elevational distribution. Eothenomys melunoguster occurs from 1400 to 3000 m and Microtus kikuchii becomes abundant only above 3000 m. Two shrews, Anourosorex squumipes and Soriculus fumidus , are widely distributed at different elevations, but their distribution seems to be little related to elevation.  相似文献   

8.
Rapoport's rule applied to an elevation gradient predicts a positive correlation between elevation ranges and elevation. This is supposed to be caused by the increasing magnitude of the climatic extremes at higher elevations, and thus, it is deduced that species richness should decrease with increasing elevation. The distribution of 614 tree species was used to test Rapoport's elevational rule along a gradient from 100 to 4300 m a.s.l., in the Nepalese Himalaya. The relationship between species richness and elevation was analysed by using generalized linear models (GLM). Generalized additive models (GAM) were used to examine the relationship between elevational range and the elevational mid-point of a species along the gradient. The widest elevation ranges are observed at mid-elevations, and narrow elevation ranges are observed at both ends of the gradient. This does not support Rapoport's elevation rule, as proposed by Stevens. There is a peak in species richness between 900 and 1000 m, and not in the tropical lowland as projected by Rapoport's elevation rule.  相似文献   

9.
The biodiversity of non‐volant small mammals along an extensive subtropical elevational gradient was studied for the first time on Gongga Mountain, the highest mountain in Hengduan Mountain ranges in China, located in one of the 25 global biodiversity hotspots. Non‐volant small mammals were replicate sampled in two seasons at eight sampling sites between 1000 and 4200 m elevation on the eastern slope of Gongga Mountain. In all, 726 individual small mammals representing 25 species were documented in 28 800 trap nights. The species richness pattern for non‐volant small mammals along the elevational gradients was hump‐shaped with highest richness at mid‐elevations. However, different richness patterns emerged between endemic and non‐endemic species, between larger‐ranged and smaller‐ranged species and between rodents and insectivores. Temperature, precipitation, plant species richness and geometric constraints (mid‐ domain effect) were most significant in explaining species richness patterns. Based on the analysis of simple ordinary least squares (OLS) and stepwise multiple regressions, the overall richness pattern, as well as the pattern of insectivores, endemic species and larger‐ranged species showed strong correlation with geometric constraint predictions. However, non‐endemic species richness was more strongly correlated with temperature, while rodent richness was correlated with plant species richness. Our study shows that no single key factor can explain all richness patterns of non‐volant small mammals. We need to be cautious in summarizing a general richness pattern of large species groups (e.g. small mammals or mammals) from species in smaller groups having different ecological distributions and life histories. Elevational richness patterns and their driving factors for small mammals are more likely dependent on what kind of species we study.  相似文献   

10.
物种多样性沿海拔梯度的垂直分布格局在生物多样性研究与保护中受到广泛关注,中峰格局是物种多样性垂直分布四类格局中最为普遍的格局。中喜马拉雅沟谷的研究表明,小型兽类的垂直分布格局符合中峰模型。中喜马拉雅和东喜马拉雅具有相似的自然地理和气候条件,由此,推断东喜马拉雅沟谷的小型兽类垂直分布格局可能也符合中峰格局。为此,在东喜马拉雅勒布沟对非飞行小型兽类开展实地调查,选取研究海拔范围为2 300~5 000 m,沿海拔梯度连续设置9个300 m海拔段45个样方采集点,累计布夹16 200次,共采集标本372号,分属 3目5科10种。研究结果显示:该沟谷非飞行小型兽类物种丰富度在2 600~2 900 m海拔段出现峰值,随后随着海拔的升高递减,即从最低海拔到中海拔段上升至峰值后开始递减至趋于平缓,即显示出中峰格局特点。喜马拉雅山脉东西走向导致其南翼各沟谷拥有相似的地理和气候特征,如各沟谷都南北走向,受印度洋暖流气候影响,拥有相似的植被垂直带分布等,这使得非飞行小型兽类物种多样性垂直分布呈现出相似的特点,推论:在大尺度背景下,地理和气候条件可能是影响物种多样性垂直分布格局的关键因素。  相似文献   

11.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

12.
Aim We investigated the patterns of species richness in land snails and slugs along a tropical elevational gradient and whether these patterns correlate with area, elevation, geographic constraints, and productivity. We did so both at the scale at which land snail population processes take place and at the coarser scale of elevational zones. Location Mount Kinabalu (4096 m) and the adjacent Mount Tambuyukon (2588 m) in Kinabalu Park, Sabah, Malaysian Borneo. Methods We used an effort‐controlled sampling protocol to determine land snail and slug species richness in 142 plots of 0.04 ha at elevations ranging from 570 to 4096 m. Extents of elevational ranges were determined by interpolation, extended where appropriate at the lower end with data from lowlands outside the study area. We used regression analysis to study the relationships between species density and richness on the one hand and elevation and area on the other. This was done for point data as well as for data combined into 300‐m elevational intervals. Results Species density (based on the individual samples) showed a decline with elevation. Elevational range length profiles revealed that range lengths are reduced at greater elevations and that a Rapoport effect is absent. Diversity showed a mild mid‐domain effect on Kinabalu, but not on Tambuyukon. When the data were combined into 300‐m elevational intervals, richness correlated more strongly with elevation than with area. Ecomorphospace was seen to shrink with increasing elevation. Main conclusions The elevational species richness patterns show the combined effects of (1) reduced niche diversity at elevations with lower productivity and (2) historical events in which the upward migration of lowland species as well as the speciation of highland endemics took place.  相似文献   

13.
Aim To document patterns in diversity, altitudinal range and body size of freshwater fishes along an elevational gradient in the Yangtze River basin. Location The Yangtze River basin, China. Methods We used published data to compile the distribution, altitudinal range and body size of freshwater fishes. Correlation, regression, clustering and graphical analyses were used to explore patterns in diversity, altitudinal range and body size of freshwater fishes in 100‐m elevation zones from 0 to 5200 m. Results Species richness patterns across the elevational gradient for total, non‐endemic and endemic fishes were different. The ratio of endemics to total richness peaked at mid elevation. Land area on a 500‐m interval scale explained a significant amount of the variation in species richness. Species density displayed two peaks at mid‐elevation zones. The cluster analysis revealed five distinct assemblages across the elevation gradient. The relationship between elevational range size and the midpoint of the elevational range revealed a triangular distribution. The frequency distribution of log maximum standard length data displayed an atypical right‐skewed pattern. Intermediate body sizes occurred across the greatest range of elevation while small and large body sizes possessed only small elevational amplitudes. The size‐elevation relationship between the two major families revealed a very strong pattern of body size constraint among the Cobitidae with no corresponding elevational constraint and a lot of body size and elevational diversification among the Cyprinidae. Main conclusion The data failed to support either Rapoport's rule or Bergmann's rule.  相似文献   

14.
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles.  相似文献   

15.
Ant communities were surveyed along an elevational gradient in the Philippines extending from lowland dipterocarp forest (250 m elevation) to mossy forest (1750 m). Standardized pitfall trapping in arboreal and terrestrial microhabitats at seven sites yielded 51 species. Collecting by hand at five of the sites yielded 48 species. The two methods produced substantially different assemblages, with only 22 species (29%) taken in common. Only a fraction of the total ant community appeared to be sampled at most of the sites. Measures of species richness and relative abundance peaked at mid-elevations and declined sharply with increasing elevation. Ants were extremely rare above 1500 m elevation. Arboreal ants were trapped much less frequently than terrestrial ants at all sites. Ant species that were abundant had broader elevational distributions than those that were less common, but most species were rare and occurred at only one or two sites. The elevational patterns for ants are largely the inverse of those documented for Philippine small mammals which reach their greatest diversity and abundance at high elevations where ants are rare. This suggests that the two groups may interact competitively. Some of the patterns observed or inferred from this study may apply to tropical ant communities in general, and are presented as series of testable hypotheses as a guide and stimulus for future research.  相似文献   

16.
Aim The biodiversity of geometrid moths (Lepidoptera) along a complete tropical elevational gradient was studied for the first time. The patterns are described, and the role of geometric constraints and environmental factors is explored. Location The study was carried out along the Barva Transect (10° N, 84° W), a complete elevational gradient ranging from 40 to 2730 m a.s.l. in Braulio Carrillo National Park, Costa Rica, and adjacent areas. Methods Moths were sampled manually in 2003 and 2004 at 12 rain forest sites using light ‘towers’, each with two 15 W ultraviolet fluorescent tubes. We used abundance‐based rarefaction, statistical estimation of true richness (Chao 1), geographically interpolated observed richness and Fisher's alpha as measures of local diversity. Results A total of 13,765 specimens representing 739 species were analysed. All four measures showed a hump‐shaped pattern with maxima between 500 and 2100 m elevation. The two subfamilies showed richness and diversity maxima at either lower (Ennominae) or higher (Larentiinae) elevation than Geometridae as a whole. Among the four environmental factors tested, relative humidity yielded the highest correlation over the transect with the rarefaction‐based richness estimates as well as with estimated true species richness of Geometridae as a whole and of Larentiinae, while rainfall explained the greatest variation of Ennominae richness. The elevational pattern of moth richness was discordant with both temperature and with tree species richness. A combination of all environmental factors in a stepwise multiple regression produced high values of r2 in Geometridae. The potential effects of geometric constraints (mid‐domain effect, MDE) were investigated by comparing them with observed, interpolated richness. Overall, models fitted very well for Geometridae as a whole and for Ennominae, but less well for Larentiinae. Small‐ranged species showed stronger deviations from model predictions than large‐ranged species, and differed strikingly between the two subfamilies, suggesting that environmental factors play a more pronounced role for small‐ranged species. We hypothesize that small‐ranged species (at least of the Ennominae) may tend to be host specialists, whereas large‐ranged species tend to be polyphagous. Based on interpolated ranges, mean elevational range for these moths was larger with increasing elevation, in accordance with Rapoport's elevational rule, although sampling effects may have exaggerated this pattern. The underlying mechanism remains unknown because Rapoport's ‘rescue’ hypothesis could not explain the observed pattern. Conclusions The results clearly show that moth diversity shows a hump‐shaped pattern. However, remarkable variation exists with regard to taxon and range size. Both environmental and geometric factors are likely to contribute to the observed patterns.  相似文献   

17.
Our understanding of geographic patterns of species diversity and the underlying mechanisms is increasing rapidly, whereas the temporal variation in these patterns remains poorly understood. We examined the seasonal species richness and species turnover patterns of non‐volant small mammals along three subtropical elevational gradients in southwest China. Small mammal diversity was surveyed in two seasons (early wet season and late wet season) using a standardized sampling protocol. The comparison of species richness patterns between two seasons indicated a temporal component in magnitude and shape, with species richness at high elevations clearly increased during the late wet season. Species richness demonstrated weak correlations with modelled temperature and precipitation. The elevational pattern of species turnover measured by Chao‐Sørenson similarity index also changed seasonally, even though the temporal pattern varied with scale. Species turnover between neighboring elevations at high elevations was slower in the late wet season. Meanwhile, there was an acceleration of species turnover along the whole range of the gradient. The seasonal change in species diversity patterns may be due to population‐level increases in abundance and elevational migration, whereas seasonal variation in factors other than temperature and precipitation may play a greater role in driving seasonal diversity patterns. Our study strongly supports the seasonality in elevational patterns of small mammal diversity in subtropical montane forests. Thus it is recommended that subsequent field surveys consider temporal sampling replicate for elevational diversity studies.  相似文献   

18.
Studies of elevational gradients in forests are particularly interesting for the considerable differences that can be observed over short distances, such as in vegetation and temperature. Different taxonomic groups display varying types of distribution patterns along elevational gradients, with unimodal distribution being recognised as the most common pattern. The distribution of species can be affected by a range of factors that include, biotic, spatial, climatic, historic and energetic. Small mammals represent an ideal model for studies about distribution and habitat use as they can be highly abundant, tend to have different diets and use space differently. The aims of this study are to build a comprehensive understanding of the community of small mammals of the Biological Reserve of Serra do Japi and to explore its distribution pattern along elevational gradients. We investigated the influence of biomass of arthropods, fruits and seeds and percentage of ground cover, canopy cover and vertical vegetation at richness and abundance of small mammals at three different elevations. To accomplish this, we used seventy‐two pitfall traps of 63 L to capture small mammals and distributed them equally across three elevations defined as low (880–899 m), intermediate (1046–1089 m) and high (1170–1189 m). Each elevation had three lines or replicas of traps. Throughout the study, we captured one hundred and fourteen individuals belonging to eleven species of small mammals. The presence of rare and endemic species demonstrates the importance of conservation and maintenance of the Biological Reserve of Serra do Japi. In regard to the distribution of species, despite the short gradient range, we found a unimodal pattern and a positive correlation between ground cover (fallen twigs and branches up to 1 m high) and richness and abundance of small mammals. More ground cover can reduce the effects of competition and predation on small mammals’ communities. Abstract in Portuguese is available with online material.  相似文献   

19.
Abstract. To determine the generality of avian diversity patterns, we investigated patterns of elevational zonation shown by birds and mammals along the eastern slope of the Andes Mountains in southeastern Peru. The strong environmental gradient sampled, entirely within Peru's Manu National Park and Biosphere Reserve, supports highly diverse faunas. Elevational distributions of 901 bird species, 129 bat species, and twenty-eight species of native mice exhibit contrasting patterns in species richness, species composition, and species turnover. Birds and bats showed smooth declines of species richness with elevation, whereas the richness of mouse assemblages was unrelated to elevation. For all three groups, the greatest differences were between lowland and highland faunas, although cutoff points for this contrast varied among groups (≈ 500 m for birds, 750 m for bats, and 1000 m for mice). Differences in composition also separated bird and bat faunas on either side of c. 1400 m (the boundary between montance forest and cloud forest); for mice, this faunal transition may take place nearer to 2000 m. Bird and bat faunas lacked the more discrete zonations suggested for mouse assemblages, as indicated by elevational range profiles and nested subset analyses. Distinct highland assemblages are apparent in two-dimensional histograms of range limits of birds and mice, but not for bats. Highland bat species occupy broader elevational ranges than lowland bat species, but for both birds and mice, species at intermediate elevations had the broadest amplitudes. Finally, clumping of range maxima and minima along the gradient identified zones of pronounced species turnover in each group, but these were generally not strongly associated with the locations of ecotones. Differences in zonation of these groups appear to reflect their different biological attributes and phylogenetic histories. Such differences obviously complicate discussions of ‘general’ diversity patterns, and limit the usefulness of birds to forecast or predict diversity patterns in other more poorly known groups—other groups may show elevated diversity and endemism in areas where avian diversity patterns appear unremarkable. The pronounced contrasts between bats and mice, and the generally intermediate character of avian patterns, suggest that future analyses might profitably partition birds into finer, more homogeneous groups of historically and/or ecologically similar species. Group differences in zonation may ultimately prove explicable with information on both species-abundance patterns and resource distributions.  相似文献   

20.
Aim In this study, we examine patterns of local and regional ant species richness along three elevational gradients in an arid ecosystem. In addition, we test the hypothesis that changes in ant species richness with elevation are related to elevation‐dependent changes in climate and available area. Location Spring Mountains, Nevada, U.S.A. Methods We used pitfall traps placed at each 100‐m elevational band in three canyons in the Spring Mountains. We compiled climate data from 68 nearby weather stations. We used multiple regression analysis to examine the effects of annual precipitation, average July precipitation, and maximum and minimum July temperature on ant species richness at each elevational band. Results We found that patterns of local ant species richness differed among the three gradients we sampled. Ant species richness increased linearly with elevation along two transects and peaked at mid‐elevation along a third transect. This suggests that patterns of species richness based on data from single transects may not generalize to larger spatial scales. Cluster analysis of community similarity revealed a high‐elevation species assemblage largely distinct from that of lower elevations. Major changes in the identity of ant species present along elevational gradients tended to coincide with changes in the dominant vegetation. Regional species richness, defined here as the total number of unique species within an elevational band in all three gradients combined, tended to increase with increasing elevation. Available area decreased with increasing elevation. Area was therefore correlated negatively with ant species richness and did not explain elevational patterns of ant species richness in the Spring Mountains. Mean July maximum and minimum temperature, July precipitation and annual precipitation combined to explain 80% of the variation in ant species richness. Main conclusions Our results suggest that in arid ecosystems, species richness for some taxa may be highest at high elevations, where lower temperatures and higher precipitation may support higher levels of primary production and cause lower levels of physiological stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号