首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Topoisomerase II poisoning and anticancer activity by the organometallic compound [RuCl(2)(C(6)H(6))(dmso)] was shown by us in an earlier study [Biochemistry 38 (1999) 4382]. Since high concentrations of this complex were required to achieve either effects, we have synthesized four derivatives of this complex in which the dimethyl sulphoxide group on the ruthenium atom was replaced with pyridine, 3-aminopyridine, p-aminobenzoic acid, and aminoguanidine. Three of these molecules showed enhanced potency of topoisomerase II poisoning and consequently also showed higher anticancer activity in breast and colon carcinoma cells in vitro. Detailed analysis of the molecular action of these compounds on topoisomerase II activity was carried out using the classical relaxation and cleavage activity of the enzyme, which revealed that the compounds poison topoisomerase II by freezing the enzyme and enzyme-cleaved DNA in a ternary "cleavage complex". The cleavage complex is implicated in the anti-neoplastic activity of these compounds. DNA interaction studies showed that these compounds interact with DNA in much the same way as [RuCl(2)(C(6)H(6))(dmso)], by external binding of the DNA helix. This is unlike most other topoisomerase II poisons, which predominantly interact with DNA through intercalation with the double helix.  相似文献   

2.
Type IA topoisomerase activities are essential for resolving DNA topological barriers via an enzyme-mediated transient single strand DNA break. Accumulation of topoisomerase DNA cleavage product can lead to cell death or genomic rearrangement. Many antibacterial and anticancer drugs act as topoisomerase poison inhibitors that form stabilized ternary complexes with the topoisomerase covalent intermediate, so it is desirable to identify such inhibitors for type IA topoisomerases. Here we report that organomercury compounds were identified during a fluorescence based screening of the NIH diversity set of small molecules for topoisomerase inhibitors that can increase the DNA cleavage product of Yersinia pestis topoisomerase I. Inhibition of relaxation activity and accumulation of DNA cleavage product were confirmed for these organomercury compounds in gel based assays of Escherichia coli topoisomerase I. Hg(II), but not As(III), could also target the cysteines that form the multiple Zn(II) binding tetra-cysteine motifs found in the C-terminal domains of these bacterial topoisomerase I for relaxation activity inhibition. Mycobacterium tuberculosis topoisomerase I activity is not sensitive to Hg(II) or the organomercury compounds due to the absence of the Zn(II) binding cysteines. It is significant that the type IA topoisomerases with Zn(II) binding domains can still cleave DNA when interfered by Hg(II) or organomercury compounds. The Zn(II) binding domains found in human Top3α and Top3β may be potential targets of toxic metals and organometallic complexes, with potential consequence on genomic stability and development.  相似文献   

3.
4.
Gopal YN  Jayaraju D  Kondapi AK 《Biochemistry》1999,38(14):4382-4388
The ability of two structurally different ruthenium complexes to interfere with the catalytic activity of topoisomerase II was studied to elucidate their molecular mechanism of action and relative antineoplastic activity. The first complex, [RuCl2(C6H6)(dmso)], could completely inhibit DNA relaxation activity of topoisomerase II and form a drug-induced cleavage complex. This strongly suggests that the drug interferes with topoisomerase II activity by cleavage complex formation. The bi-directional binding of [RuCl2(C6H6)(dmso)] to DNA and topoisomerase II was verified by immunoprecipitation experiments which confirmed the presence of DNA and ruthenium in the cleavage complex. The second complex, Ruthenium Salicylaldoxime, could not inhibit topoisomerase II relaxation activity appreciably and also could not induce cleavage complex formation, though its DNA-binding characteristics and antiproliferation activity were almost comparable to those of [RuCl2(C6H6)(dmso)]. The results suggest that the difference in ligands and their orientation around a metal atom may be responsible for topoisomerase II poisoning by the first complex and not by the second. A probable mechanism is proposed for [RuCl2(C6H6)(dmso)], where the ruthenium atom interacts with DNA and ligands of the metal atom form cross-links with topoisomerase II. This may facilitate the formation of a drug-induced cleavage complex.  相似文献   

5.
Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described.  相似文献   

6.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

7.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

8.
The aim of this study was to evaluate biologically active novel molecules having potentials to be drugs by their antitumor properties and by activities of apoptotic caspase and topoisomerase. Following syntheses of novel eight bis(α‐aminoalkyl)phosphinic acid derivatives ( 4a–h ) as a result of array of reactions, compounds were evaluated by cytotoxic effects in vitro on human breast cancer (MCF‐7) and normal endothelial (HUVEC) cell lines. All phosphinic acid derivatives were effective for cytotoxicity on both MCF‐7 and HUVEC lines, while 4c , 4e , and 4f compounds were found significantly more effective. For the evaluation of antitumor properties of compounds in a highly sensitive method, their effects on inhibiting topoisomerases I and II were investigated. Also, some of the bis(α‐aminoalkyl)phosphinic acid derivatives ( 4a, 4e–h ) showed nice inhibitory action against acetylcholinesterase and human carbonic anhydrase isoforms I and II.  相似文献   

9.
Novel metal complexes have received great attention in the last decades due to their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy, providing less toxicity and side effects to patients. Glioblastoma is an aggressive and invasive type of brain tumor and despite of advances is the field of neurooncology there is no effective treatment until now. Therefore, we sought to investigate the potential antiproliferative activity of phosphine-ruthenium-based complexes on human glioblastoma cell lines. Due to its octahedral structure as opposed to the square-planar geometry of platinum(II) compounds, ruthenium(II) complexes exhibit different structure–function relationship probably acting through a different mechanism from that of cisplatin beyond their ability to bind DNA. To better improve the pharmacological activity of metal complexes we hypothesized that neutron activation of ruthenium in the complexes would allow to decrease the effective concentration of the compound needed to kill tumor cells. Herein we report on the effect of unmodified and neutron activated phosphine ruthenium II complexes on glioblastoma cell lines carrying wild-type and mutated p53 tumor suppressor gene. Induction of apoptosis/authophagy as well as generation of reactive oxygen species were determined. The phosphine ruthenium II complexes tested were highly active against glioblastoma cell lines inducing cell death both through apoptosis and autophagy in a p53 independent fashion. Neutron activation of ruthenium compounds rendered them more active than their original counterparts suggesting a new strategy to improve the antitumor activity of these compounds.  相似文献   

10.
Since they are potential topoisomerase II (Topo II) inhibitors, naphthoquinone fused cyclic α-aminophosphonates display anticancer activity. In order to explore the inhibitory mechanisms of these compounds, they were docked into the active site of Topo II structure, which allowed their probable binding modes to be predicted. Some meaningful results concerning their structure–activity relationships were obtained from density functional theory calculations. Models based on quantitative comparative molecular field analysis and comparative molecular similarity index analysis were derived for the steric, electrostatic, hydrophobic and H-bonding features of the compounds. The present study provides valuable results that enhance our understanding of the anticancer activities of these inhibitors and will aid the rational drug design of novel Topo II inhibitors in the future.  相似文献   

11.
Antineoplastic bis(dioxopiperazine)s, such as meso-2,3-bis(2,6-dioxopiperazin-4-yl)butane (ICRF-193), are widely believed to be only catalytic inhibitors of topoisomerase II. However, topoisomerase inhibitors have little or no antineoplastic activity unless they are topoisomerase poisons, a special subclass of topoisomerase-targeting drugs that stabilize topoisomerase-DNA strand passing intermediates and thus cause the topoisomerase to become a cytotoxic DNA-damaging agent. Here we report that ICRF-193 is a very significant topoisomerase II poison. Detection of topoisomerase II poisoning by ICRF-193 required the use of a chaotropic protein denaturant in the topoisomerase poisoning assays. ICRF-193 caused dose-dependent cross-linking of human topoisomerase IIbeta to DNA and stimulated topoisomerase IIbeta-mediated DNA cleavage at specific sites on (32)P-end-labeled DNA. Human topoisomerase IIalpha-mediated DNA cleavage was stimulated to a lesser extent by ICRF-193. In vivo experiments with MCF-7 cells also showed the requirement of a chaotropic protein denaturant in the assays and selectivity for the beta-isozyme of human topoisomerase II. Studies with two topoisomerase IIbeta-negative cell model systems confirmed significant topoisomerase II poisoning by ICRF-193 in the wild type cells and were consistent with beta-isozyme selectivity. Common use of only the detergent, SDS, in assays may have led to failure to detect topoisomerase II poisoning by ICRF-193 in earlier studies.  相似文献   

12.
Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. Combilexin molecules, which combine DNA minor groove binding and intercalating functionalities, have the potential for increased DNA binding affinity and increased selectivity due to their dual mode of DNA binding. This study describes the synthesis of DNA minor groove binder netropsin analogs containing either one or two N-methylpyrrole carboxamide groups linked to DNA-intercalating anthrapyrazoles. Those hybrid molecules which had both two N-methylpyrrole groups and terminal (dimethylamino)alkyl side chains displayed submicromolar cytotoxicity towards K562 human leukemia cells. The combilexins were also evaluated for DNA binding by measuring the increase in DNA melting temperature, for DNA topoisomerase IIα-mediated double strand cleavage of DNA, for inhibition of DNA topoisomerase IIα decatenation activity, and for inhibition of DNA topoisomerase I relaxation of DNA. Several of the compounds stabilized the DNA–topoisomerase IIα covalent complex indicating that they acted as topoisomerase IIα poisons. Some of the combilexins had higher affinity for DNA than their parent anthrapyrazoles. In conclusion, a novel group of compounds combining DNA intercalating anthrapyrazole groups and minor groove binding netropsin analogs have been designed, synthesized and biologically evaluated as possible novel anticancer agents.  相似文献   

13.
The therapeutic anticancer potential of flavonoids shown by recent research needs a greater understanding of these compounds. They are antioxidants and antimutagenic agents that can inhibit tumor promotion and transformation and can modify the activity of a large number of mammalian enzyme systems, such as human DNA-topoisomerases. Poisons of topoisomerases generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some of them have therapeutic efficacy in human cancer. The present investigation has assayed ten flavonoids, isolated in our laboratory, as topoisomerase I poisons obtaining myricetin and myricetin-3-galactoside as two new topoiosomerase I poisons. These two flavonoids, and the plant extract from which they were isolated, were assayed for cytotoxic activity against three human cancer cell lines using the SRB assay. Taking into account our previous research, structural requisites implicated in the topoisomerase poisoning are discussed.  相似文献   

14.
The therapeutic anticancer potential of flavonoids shown by recent research needs a greater understanding of these compounds. They are antioxidants and antimutagenic agents that can inhibit tumor promotion and transformation and can modify the activity of a large number of mammalian enzyme systems, such as human DNA-topoisomerases. Poisons of topoisomerases generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some of them have therapeutic efficacy in human cancer. The present investigation has assayed ten flavonoids, isolated in our laboratory, as topoisomerase I poisons obtaining myricetin and myricetin-3-galactoside as two new topoiosomerase I poisons. These two flavonoids, and the plant extract from which they were isolated, were assayed for cytotoxic activity against three human cancer cell lines using the SRB assay. Taking into account our previous research, structural requisites implicated in the topoisomerase poisoning are discussed.  相似文献   

15.
Topoisomerase II is a major molecular target for a number of DNA-binding anticancer drugs. In the present study, we report topoisomerase II inhibition and anticancer activity by four substituted ferrocene derivatives which do not bind to DNA. The first derivative, acetyl-substituted ferrocene (monoacetylferrocene), showed a minor inhibition of topoisomerase II activity along with a consequent inhibition of cancer cell proliferation. The second derivative (diacetylferrocene) showed a higher potency of action compared to the monosubstituted derivative. The third and fourth derivatives, with mono- and disubstituted carboxaldoxime groups (ferrocenecarboxaldoxime and ferrocenedicarboxaldoxime), showed a higher anticancer action and stronger topoisomerase II inhibition. To understand their molecular mechanism of action, cleavage assays were carried out to monitor the drug-induced, topoisomerase II mediated DNA cleavage. The results show that diacetylferrocene and ferrocenedicarboxaldoxime could form an enzyme-drug-DNA ternary complex, called a "cleavage complex," resulting in DNA cleavage. These results along with those of an immunoprecipitation assay indicate that the two compounds interact with topoisomerase II alone and poison its activity by trapping the enzyme and enzyme-cleaved DNA in the covalently closed cleavage complex. The formation of such a complex has numerous genetic implications, which ultimately results in neoplastic cell death.  相似文献   

16.
Bandele OJ  Osheroff N 《Biochemistry》2008,47(45):11900-11908
Genistein, a widely consumed bioflavonoid with chemopreventative properties in adults, and etoposide, a commonly prescribed anticancer drug, are well-characterized topoisomerase II poisons. Although both compounds display similar potencies against human topoisomerase IIalpha and IIbeta in vitro and induce comparable levels of DNA cleavage complexes in cultured human cells, their cytotoxic and genotoxic effects differ significantly. As determined by assays that monitored cell viability or the phosphorylation of histone H2AX, etoposide was much more toxic in CEM cells than genistein. Further studies that characterized the simultaneous treatment of cells with genistein and etoposide indicate that the differential actions of the two compounds are not related to the effects of genistein on cellular processes outside of its activity against topoisomerase II. Rather, they appear to result from a longer persistence of cleavage complexes induced by etoposide as compared to genistein. Parallel in vitro studies with purified type II enzymes led to similar conclusions regarding cleavage complex persistence. Isoform-specific differences were observed in vitro and in cells treated with etoposide. To this point, the t 1/2 of etoposide-induced DNA cleavage complexes formed with topoisomerase IIalpha in CEM cells was approximately 5 times longer than those formed with topoisomerase IIbeta. The cytotoxicity of etoposide following four treatment-recovery cycles was similar to that induced by continuous exposure to the drug over an equivalent time period. Taken together, these findings suggest that it may be possible to preferentially target topoisomerase IIalpha with etoposide by employing a schedule that utilizes pulsed drug treatment-recovery cycles.  相似文献   

17.
18.
Multimodal action of antitumor agents on DNA: the ellipticine series   总被引:2,自引:0,他引:2  
Most cytotoxic anticancer agents interact directly or indirectly with nuclear DNA, the ultimate target for this class of compounds. For a given type of drug both direct and indirect action at the DNA level usually causes various types of interference or damage. This multimodal mechanism of action is well illustrated by antitumor drugs in the ellipticine series which may bind to DNA through intercalation, may undergo covalent binding, may generate oxidizing species, and may interfere with the catalytic activity of topoisomerase II. The antitumor activity of these compounds may, therefore, result from alternative cytotoxic events. The present review summarizes information obtained with ellipticine compounds on the relation between the nature of the drugs' action on DNA and their cytotoxic and/or antitumor activity. The occurrence of topoisomerase-mediated DNA cleavage appears to be responsible for antitumor activity. The capability of the drugs to interfere with the action of topoisomerase II requires the presence of an oxidizable phenolic group on their structure. This feature (or a related one) is shared by all antitumor drugs acting on this enzyme.  相似文献   

19.
Although acetaminophen is the most widely used analgesic in the world, it is also a leading cause of toxic drug overdoses. Beyond normal therapeutic doses, the drug is hepatotoxic and genotoxic. All of the harmful effects of acetaminophen have been attributed to the production of its toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Since many of the cytotoxic/genotoxic events triggered by NAPQI are consistent with the actions of topoisomerase II-targeted drugs, the effects of this metabolite on human topoisomerase IIalpha were examined. NAPQI was a strong topoisomerase II poison and increased levels of enzyme-mediated DNA cleavage >5-fold at 100 microM. The compound induced scission at a number of DNA sites that were similar to those observed in the presence of the topoisomerase II-targeted anticancer drug etoposide; however, the relative site utilization differed. NAPQI strongly impaired the ability of topoisomerase IIalpha to reseal cleaved DNA molecules, suggesting that inhibition of DNA religation is the primary mechanism underlying cleavage enhancement. In addition to its effects in purified systems, NAPQI appeared to increase levels of DNA scission mediated by human topoisomerase IIalpha in cultured CEM leukemia cells. In contrast, acetaminophen did not significantly affect the DNA cleavage activity of the human enzyme in vitro or in cultured CEM cells. Furthermore, the analgesic did not interfere with the actions of etoposide against the type II enzyme. These results suggest that at least some of the cytotoxic/genotoxic effects caused by acetaminophen overdose may be mediated by the actions of NAPQI as a topoisomerase II poison.  相似文献   

20.
Two moieties of epipodophyllotoxin have been linked at C4-position to provide novel bisepipodophyllotoxin analogues. These have been evaluated for their anticancer potential and DNA-topoisomerase II poisoning activity. Most of these analogues have exhibited promising in vitro anticancer activity against different human tumour cell lines and interestingly 4(')-O-methylated analogues have shown increased cytotoxic activity. Similarly, the DNA-topo II poisoning activity tested for these compounds has not only exhibited the DNA cleavage potential comparable to etoposide, but for some compounds this cleavage potential is superior to etoposide. Further, an interesting structure-activity relationship of these epipodophyllotoxin dimers have been generated on the basis of GI(50) values. The equations indicated that GI(50) activity is strongly dependent on structural and thermodynamic properties. These QSAR results are discussed in conjunction with conformational analysis from molecular modelling studies. QSAR models developed in these studies will be helpful in the future to design novel potent bispodophyllotoxin analogues by minor structural modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号