首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
2.
A plant microRNA regulates the adaptation of roots to drought stress   总被引:2,自引:0,他引:2  
Chen H  Li Z  Xiong L 《FEBS letters》2012,586(12):1742-1747
  相似文献   

3.
An Arabidopsis thaliana drought-tolerant mutant, altered expression of APX2 ( alx8 ), has constitutively increased abscisic acid (ABA) content, increased expression of genes responsive to high light stress and is reported to be drought tolerant. We have identified alx8 as a mutation in SAL1, an enzyme that can dephosphorylate dinucleotide phosphates or inositol phosphates. Previously identified mutations in SAL1, including fiery ( fry1-1 ), were reported as being more sensitive to drought imposed by detachment of rosettes. Here we demonstrate that alx8 , fry1-1 and a T-DNA insertional knockout allele all have markedly increased resistance to drought when water is withheld from soil-grown intact plants. Microarray analysis revealed constitutively altered expression of more than 1800 genes in both alx8 and fry1-1. The up-regulated genes included some characterized stress response genes, but few are inducible by ABA. Metabolomic analysis revealed that both mutants exhibit a similar, dramatic reprogramming of metabolism, including increased levels of the polyamine putrescine implicated in stress tolerance, and the accumulation of a number of unknown, potential osmoprotectant carbohydrate derivatives. Under well-watered conditions, there was no substantial difference between alx8 and Col-0 in biomass at maturity; plant water use efficiency (WUE) as measured by carbon isotope discrimination; or stomatal index, morphology or aperture. Thus, SAL1 acts as a negative regulator of predominantly ABA-independent and also ABA-dependent stress response pathways, such that its inactivation results in altered osmoprotectants, higher leaf relative water content and maintenance of viable tissues during prolonged water stress.  相似文献   

4.
The use of mutants: a most promising way to detect genes involved in development or in response to environmental stress. The model species Arabidopsis, particularly amenable to dissect the genetics and molecular mechanisms underlying physiological responses, also offers the advantage of a wide variety of mutants. As far as drought tolerance is concerned, hormonal mutants, impaired in hormone biosynthesis — deficient mutants — or in the signal transduction pathway—responsive mutants—provide a valuable tool to analyse the role of phytohormone interaction in the plant drought behaviour as well as to differentiate the mutant phenotypes with new criteria.These two categories of mutants (in particular the abscisic acid, ABA, mutants) were shown to be affected in developmental processes during seed maturation-in the desiccation phase- and/or in response to environmental stress (drought, ...) in vegetative tissues. The present report will focus on this last aspect: alterations in drought responses in vegetative tissues (adaptive strategies and drought tolerance mechanisms) essentially in Arabidopsis hormonal mutants (ABA-deficient and ABA-insensitive, GA-deficient, auxin and ethylene-insensitive).Some of the results are discussed with regard to the predicted functions of genes affected by the mutations.  相似文献   

5.
Drought and salt stress tolerance of Arabidopsis (Arabidopsis thaliana) plants increased following treatment with the nonprotein amino acid beta-aminobutyric acid (BABA), known as an inducer of resistance against infection of plants by numerous pathogens. BABA-pretreated plants showed earlier and higher expression of the salicylic acid-dependent PR-1 and PR-5 and the abscisic acid (ABA)-dependent RAB-18 and RD-29A genes following salt and drought stress. However, non-expressor of pathogenesis-related genes 1 and constitutive expressor of pathogenesis-related genes 1 mutants as well as transgenic NahG plants, all affected in the salicylic acid signal transduction pathway, still showed increased salt and drought tolerance after BABA treatment. On the contrary, the ABA deficient 1 and ABA insensitive 4 mutants, both impaired in the ABA-signaling pathway, could not be protected by BABA application. Our data demonstrate that BABA-induced water stress tolerance is based on enhanced ABA accumulation resulting in accelerated stress gene expression and stomatal closure. Here, we show a possibility to increase plant tolerance for these abiotic stresses through effective priming of the preexisting defense pathways without resorting to genetic alterations.  相似文献   

6.
7.
8.
在植物体内,细胞周期对于植物的萌发、生长、开花、结实等各个生长发育阶段具有重要作用。细胞周期正常运转需要依赖一些细胞周期蛋白,但是目前关于细胞周期蛋白调控根发育的分子机制还不清楚。通过筛选模式植物拟南芥的根发育异常突变体,分离鉴定了1个突变体dig9(drought inhibition of lateral root growth),该突变体表现为主根短、侧根少、发育迟缓、顶端分生组织变小、叶片扭曲、无主茎等表型。通过图位克隆,成功定位并克隆了DIG9基因,该基因编码一个细胞周期蛋白,是有丝分裂后期促进复合体的一个亚基APC8 (anaphase-promoting complex)。通过亚细胞定位发现DIG9定位于细胞核;qRT-PCR检测发现DIG9基因在根中有较高的表达量,进一步通过启动子-GUS报告系统发现DIG9在根尖、侧根和顶端分生组织等细胞分裂旺盛区域表达。外施IAA能恢复dig9突变体的侧根表型但不能恢复根短表型。dig9突变体对干旱及盐胁迫反应不敏感。研究结果表明DIG9基因可能通过影响IAA的产生来调控植物的侧根发育。  相似文献   

9.
10.
Protecting crop yield under drought stress is a major challenge for modern agriculture. One biotechnological target for improving plant drought tolerance is the genetic manipulation of the stress response to the hormone abscisic acid (ABA). Previous genetic studies have implicated the involvement of the beta-subunit of Arabidopsis farnesyltransferase (ERA1) in the regulation of ABA sensing and drought tolerance. Here we show that molecular manipulation of protein farnesylation in Arabidopsis, through downregulation of either the alpha- or beta-subunit of farnesyltransferase enhances the plant's response to ABA and drought tolerance. To test the effectiveness of tailoring farnesylation in a crop plant, transgenic Brassica napus carrying an ERA1 antisense construct driven by a drought-inducible rd29A promoter was examined. In comparison with the non-transgenic control, transgenic canola showed enhanced ABA sensitivity, as well as significant reduction in stomatal conductance and water transpiration under drought stress conditions. The antisense downregulation of canola farnesyltransferase for drought tolerance is a conditional and reversible process, which depends on the amount of available water in the soil. Furthermore, transgenic plants were more resistant to water deficit-induced seed abortion during flowering. Results from three consecutive years of field trial studies suggest that with adequate water, transgenic canola plants produced the same amount of seed as the parental control. However, under moderate drought stress conditions at flowering, the seed yields of transgenic canola were significantly higher than the control. Using protein farnesyltransferase as an effective target, these results represent a successful demonstration of engineered drought tolerance and yield protection in a crop plant under laboratory and field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号