首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Contaminating fungi, such as Fusarium species, produce metabolites that may interfere with normal barley grain proteolysis pattern and consequently, affect malt and beer quality. Protein compositional changes of an initial mixture of 20 % Fusarium culmorum infected and 80 % noninfected mature barley grains and respective malt are reported here. Proteolytic activity of infected barley grains (IBG) and respective malt, with controls (uninfected grains), were characterized using protease inhibitors from each class of this enzyme, including metallo-, cysteine, serine, and aspartic proteases, as well as uninhibited protease fractions. The proteins were extracted according to the Osborne fractionation and separated by size exclusion chromatography. Additionally, two-dimensional (2D) gel electrophoresis (GE) was used to analyze hydrophobic storage proteins isolated from the control and IBG. Analyses revealed that F. culmorum IBG had a twofold increase of proteolytic activity compared to the control sample, which showed an increase in all protease classes with aspartic proteases dominating. Infected and control malt grains were comparable with cysteine proteases representing almost 50 % of all proteolytic enzymes detected. Protein extractability was 31 % higher in IBG compared to the control barley. The albumin fraction showed that several metabolic proteins decreased and increased at different rates during infection and malting, thus showing a complex F. culmorum infection interdependence. Prolamin storage proteins were more hydrophobic during barley fungal infection. F. culmorum interfered with the grain hydrolytic protein profile, thereby altering the grain's protein content and quality.  相似文献   

3.
Abstract  The protein digestive capability of the larvae of the longhorn beetle ( Oemona hirta , Coleoptera: Cerambycidae, Fabricius, 1775) was investigated. This species feeds only on wood where there is a high proportion of vascular tissue. The pH of the midgut, the major digestive organ, was alkaline and protein hydrolysis was maximal at alkaline pH. Use of specific synthetic peptide substrates showed that the major protease activities were the endopeptidases, trypsin and chymotrypsin-like activity, and the exopeptidase, leucine aminopeptidase and the pH curves corresponded to that with protein substrate. Studies using a range of serine protease inhibitors as well as specific inhibitors of metalloproteases, cysteine proteases and aspartate proteases confirmed a serine protease-based digestive system similar to earlier reports of sapwood-feeding Cerambycids. Control of these insect pests using protease inhibitors is discussed.  相似文献   

4.
Protein inhibitors of proteolytic enzymes play an important role in regulating the activity of endogenous proteases and in host defense mechanisms against pathogens preventing the deleterious effects of exogenous proteases. In recent years a great interest in protein inhibitors of cysteine proteases has increased due to the extensive growth of knowledge about the contribution of cysteine proteases to pathological processes associated with many human diseases, as well as due to prospects for treatment of these disorders which may arise from the thorough understanding of their inhibitory mechanisms. This paper reviews the most important aspects of three families of cysteine protease inhibitors: cystatins, thyropins and inhibitors homologous to propeptides of cysteine proteases. Special attention is given to structural bases of the interactions between the inhibitors and their target enzymes. The paper presents a general characterization of the families according to the MEROPS classification of protease inhibitors, pointing out new members.  相似文献   

5.
Structural studies of cysteine proteases and their inhibitors.   总被引:3,自引:0,他引:3  
Cysteine proteases (CPs) are responsible for many biochemical processes occurring in living organisms and they have been implicated in the development and progression of several diseases that involve abnormal protein turnover. The activity of CPs is regulated among others by their specific inhibitors: cystatins. The main aim of this review is to discuss the structure-activity relationships of cysteine proteases and cystatins, as well as of some synthetic inhibitors of cysteine proteases structurally based on the binding fragments of cystatins.  相似文献   

6.
Extracellular proteases were isolated from the cell-free culture supernatant of the oyster-pathogenic protozoan, Perkinsus marinus, by bacitracin–sepharose affinity chromatography. The purified protease fractions contained >75% of the protease activity initially loaded onto the column with very high specific activity that corresponded to 8–11-fold level of protease enrichment. The isolated proteases hydrolysed a variety of protein substrates including oyster plasma. All of the isolated P. marinus proteases belonged to the serine class of proteases. Inhibitor studies involving spectrophotometric assay and gelatin gel electrophoresis showed high levels of inhibition in the presence of the serine protease inhibitors PMSF, benzamidine and chymostatin, whereas inhibitors of cysteine, aspartic, and metalloproteases showed little or no inhibition. Spectrophotometric assays involving serine-specific peptide substrates further revealed that the isolated proteases belong to the class of chymotrypsin-like serine proteases. A 41.7 kDa monomeric, N-glycosylated, serine protease (designated Perkinsin) has been identified as the major P. marinus extracellular protease.  相似文献   

7.
Proteins can be post-translationally modified by ADP-ribose. Previously, two classes of ADP-ribosyl protein linkages have been detected in vivo which have chemical properties indistinguishable from ADP-ribosyl arginine and ADP-ribosyl glutamate or aspartate. Reported here is the detection of a third class of endogenous ADP-ribosyl protein linkage. This class is chemically indistinguishable from ADP-ribose linked to cysteine residues by a thioglycosidic bond. The distribution of ADP-ribosyl cysteine residues was studied in subcellular fractions of rat liver. Proteins modified on cysteine were detected only in the plasma membrane fraction. Pertussis toxin is known to disrupt signal transduction of ADP-ribosylation of cysteine residues of plasma membrane GTP binding proteins. The results described here raise the interesting possibility that the endogenous modification of plasma membrane protein cysteine residues may be involved in signal transduction.  相似文献   

8.
Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  相似文献   

9.
The nematophagous fungus Arthrobotrys oligospora produced extracellular proteases when grown in a liquid culture, as revealed by measuring the hydrolysis of the chromogenic substrate Azocoll. The extracellular protease activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and other serine protease inhibitors and partly inhibited by the aspartate protease inhibitor pepstatin and by a cysteine protease inhibitor [l-trans-epoxysuccinyl-leucylamide-(4-guanidino)-butane, or E-64]. Substrate gel electrophoresis showed that the fungus produced several different proteases, including multiple serine proteases. The function of proteases in the infection of nematodes was examined by treating the fungus with various protease inhibitors. None of the inhibitors tested affected the adhesion of nematodes to the traps, but incubating trap-bearing mycelium with a serine protease inhibitor, PMSF, antipain, or chymostatin, or the metalloprotease inhibitor phenanthroline significantly decreased the immobilization of nematodes captured by the fungus. Inhibitors of cysteine or aspartic proteases did not affect the immobilization of captured nematodes. The effects of PMSF on the immobilization of nematodes were probably due to serine proteases produced by the fungus, since the effects were observed when unbound inhibitor was washed away from the fungus before the nematodes were added to the system. No effects were observed when the nematodes only were pretreated with PMSF.  相似文献   

10.
An inbreeding line of white clover has been identified which remains non-nodulated under appropriate physiological conditions and so the nitrogen concentration of the plant can be manipulated by altering the nitrate supply to the roots. Non-nodulating plants were used to test the hypothesis that acclimation to nitrogen limitation in white clover involves changes in protease activity and composition. These results indicate that acclimation to nitrogen limitation involves the realignment of constituent proteases without necessarily incurring significant changes in total protease activity. Plants grown at 2.5, 5.0, 7.5, and 10 mM nitrate showed a positive correlation between nitrate supply and foliar protein concentration. Protein profiles, revealed by Coomassie-stained SDS-PAGE, were unchanged between treatments for a given amount of protein. Serine, aspartate/metalloprotease, and two cysteine proteases were identified in the leaves. Although total protease activity per gram fresh weight was unchanged between treatments, the relative contributions of these four proteases was determined by nitrate supply. When plants were stressed further by withholding nitrate there was an increase in cysteine protease activity, but a senescence-related aspartate/metalloprotease was not visible. Hence, while protease expression in white clover leaves responded to the current and past nitrogen status of the plant, the proteases involved in remobilization during nutrient limitation were distinct from those involved during the main senescence period. It is suggested that nitrogen limitation induced an early, reversible stage of senescence in which perturbations in protease activity facilitated the degradation of non-essential proteins in order to increase the chances of plant survival or seed set.  相似文献   

11.
Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin-protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues. The loss of regulated serpin-protease matched expression may underlie the imbalanced protease activity observed in pathological states.  相似文献   

12.
Caspase-dependent apoptotic pathways in CNS injury   总被引:15,自引:0,他引:15  
Recent studies have suggested a role for neuronal apoptosis in cell loss following acute CNS injury as well as in chronic neurodegeneration. Caspases are a family of cysteine requiring aspartate proteases with sequence similarity to Ced-3 protein of Caenorhabditis elegans. These proteases have been found to contribute significantly to the morphological and biochemical manifestations of apoptotic cell death. Caspases are translated as inactive zymogens and become active after specific cleavage. Of the 14 identified caspases, caspase-3 appears to be the major effector of neuronal apoptosis induced by a variety of stimuli. A role for caspase-3 in injury-induced neuronal cell death has been established using semispecific peptide caspase inhibitors. This article reviews the current literature relating to pathways regulating caspase activation in apoptosis associated with acute and chronic neurodegeneration, and suggests that identification of critical upstream caspase regulatory mechanisms may permit more effective treatment of such disorders.  相似文献   

13.
Cysteine proteases of the malaria parasite Plasmodium falciparum, known as falcipains, are promising targets for antimalarial chemotherapy. We evaluated cultured parasites for the stage-specific expression of cysteine proteases and sensitivity to cysteine protease inhibitors. Protease activity and inhibitor sensitivity varied markedly over time. Cysteine protease activity was greatest in early trophozoites, while sensitivity to cysteine protease inhibitors was greatest in mature trophozoites. Our results indicate the importance of considering the stage-specific effects of antimalarials and are consistent with the conclusion that the principal antimalarial activity of cysteine protease inhibitors is due to a block in hemoglobin hydrolysis.  相似文献   

14.
Fusion proteins integrating dual pesticidal functions have been devised over the last 10 years to improve the effectiveness and potential durability of pest-resistant transgenic crops, but little attention has been paid to the impact of the fusion partners on the actual activity of the resulting hybrids. Here we assessed the ability of the rice cysteine protease inhibitor, oryzacystatin I (OCI), to retain its protease inhibitory potency when used as a template to devise hybrid inhibitors with dual activity against papain-like proteases and carboxypeptidase A (CPA). C-terminal variants of OCI were generated by fusing to its C-terminal end: (i) the primary inhibitory site of the small CPA inhibitor potato carboxypeptidase inhibitor (PCI, amino acids 35-39); or (ii) the complete sequence of PCI (a.a. 1-39). The hybrid inhibitors were expressed in E. coli and tested for their inhibitory activity against papain, CPA and digestive cysteine proteases of herbivorous and predatory arthropods. In contrast with the primary inhibitory site of PCI, the entire PCI attached to OCI was as active against CPA as free, purified PCI. The OCI-PCI hybrids also showed activity against papain, but the presence of extra amino acids at the C terminus of OCI negatively altered its inhibitory potency against cysteine proteases. This negative effect, although not preventing dual binding to papain and CPA, was correlated with an increased binding affinity for papain presumably due to non-specific interactions with the PCI domain. These results confirm the potential of OCI and PCI for the design of fusion inhibitors with dual protease inhibitory activity, but also point out the possible functional costs associated with protein domain grafting to recipient pesticidal proteins.  相似文献   

15.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

16.
Interleukin-1 beta is a 17.4-kilodalton hormone derived from a 33-kilodalton inactive precursor produced by monocytes. We used the precursor as a substrate to detect proteolytic activities in peripheral blood mono-nuclear cell-conditioned medium that might be involved in interleukin-1 beta processing. We found that the conditioned medium, following passage through DEAE-Sephacel, generates a biologically active fragment from the precursor that runs slightly higher than the mature hormone in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The responsible activity behaved as a single protein in ion exchange chromatography. It was completely inhibited by metal ion chelators and not by inhibitors of serine, cysteine, or aspartate proteases, and it was dependent on both calcium (or magnesium) and zinc. The enzyme was not inhibited by three substrate-based metalloprotease inhibitors, phosphoramidon, benzyloxycarbonyl-Gly-Leu-NH2, and N-(2-carboxy-3-phenylpropionyl)-Leu. NH2-terminal sequence analysis showed that cleavage of the precursor occurred between a histidine and an aspartate residue, and digestion of synthetic peptides indicated that the protease is specific for pre-aspartate cleavages.  相似文献   

17.
Staphostatins, a novel family of cysteine protease inhibitors with a unique mechanism of action and distinct protein fold has recently been discovered. In this report we describe the properties of Staphylococcus epidermidis staphostatin A (EcpB), a new member of the family. As for other staphostatins, the recombinant S. epidermidis staphostatin A exerted very narrow inhibitory specificity, limited to cysteine protease from the same species. The closely related proteases from S. aureus cleaved the inhibitor at the reactive site peptide bond and inactivated it. The EcpB homologue, S. aureus staphostatin A (ScpB), was also susceptible to proteolytic cleavage at the same site by non-target cysteine proteases. Conversely, S. aureus staphostatin B (SspC) was resistant to such proteolysis. The difference in the susceptibility of individual inhibitors to proteolytic cleavage at the reactive site suggests subtle variations in the mechanism of interaction with cysteine proteases.  相似文献   

18.
The genes encoding secreted, broad-spectrum activity cysteine proteases of Staphylococcus spp. (staphopains) and Streptococcus pyogenes (streptopain, SpeB) are genetically linked to genes encoding cytoplasmic inhibitors. While staphopain inhibitors have lipocalin-like folds, streptopain is inhibited by a protein bearing the scaffold of the enzyme profragment. Bioinformatic analysis of other prokaryotic genomes has revealed that two more species may utilize this same genetic arrangement to control streptopain-like proteases with lipocalin-like inhibitors, while three other species may employ a C-terminally located domain that resembles the profragment. This apparently represents a novel system that bacteria use to control the intracellular activity of their proteases.  相似文献   

19.
Papain-like cysteine proteases are the most numerous family of the cysteine protease class. They are expressed throughout the animal and plant kingdoms as well as in viruses and bacteria. More recently, this protease family has drawn attention as a potential pharmaceutical drug target in diseases characterized by excessive extracellular matrix degradation such as in osteoporosis, arthritis, vascular diseases, and cancer. Moreover, papain-like cysteine proteases have been identified as critical components of the life cycle and invasive potential of various human and live stock pathogens as well as major allergens. Therefore, this protease class is rigorously studied and requires sufficient amounts of protease protein to analyze structure-activity relationships, their 3-D structures as well as to screen for and optimize potent and selective inhibitors. This review summarizes approaches to generate active papain-like cysteine proteases by heterologous expression in a variety of expression systems.  相似文献   

20.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号