首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Asymmetrical lifting and lowering are predominant activities in the workplace. Mechanical causes are suggested for many back injuries and the dynamic conditions within which spine loading occurs are related to spine loading increase. More data on tridimensional biomechanical lumbar spine loading during asymmetrical lifting and lowering are needed. A tridimensional dynamic multisegment model was developed to compute spinal loading for asymmetrical box-handling situations. The tridimensional positions of the anatomical markers were generated by a direct linear transformation algorithm adapted for the processing of data from two real and two virtual views (mirrors). Two force platforms measured the external forces. Five male subjects performed three variations (slow, fast and accelerated) of asymmetric lifting and two variations (slow and fast) of asymmetric lowering. The torsional, extension/flexion and lateral bending net muscular moments at the L5/S1 joint were computed and peak values selected for statistical analysis. For the lifting task, the fast and accelerated conditions showed significant increases over the slow condition for torsion, extension/flexion and lateral-bending moments. The accelerated condition also showed significant increases over the fast condition for extension. A comparison between lifting and lowering tasks showed equivalent loadings for torsion and extension. The moments were compared to average maximal values measured on equivalent male subject populations by isokinetic dynamometry. This showed torsional and extension values of 30 and 83% of the maximal possible subject capacity, respectively. These results demonstrated that dynamic factors do influence the load on the spine and highlighted the influence of both lifting and lowering on the loading of the spine. This suggested that for a more complete analysis of asymmetrical handling, the maximal velocity and acceleration produced during lifting should be included.  相似文献   

3.
Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model’s fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain.  相似文献   

4.
Dynamically and statically determined low back moments during lifting   总被引:1,自引:0,他引:1  
Assessment of the effects of lifting on the low back has most frequently been done with the aid of static models. Many lifting movements appear to have substantial inertial components. It was of interest, therefore, to determine the size of the difference between statically and dynamically calculated lumbar moments during a demanding but not unusual manual lift observed in a metal fabrication industry.

The results of several trials by four young men showed that the dynamic model resulted in peak L4 L5 moments 19% higher on average, with a maximum difference of 52%, than those determined from the static model. The technique adopted in the lift could minimize the difference. When the inertial forces of the load itself and the load weight were incorporated into an otherwise static model (quasi-dynamic) then the resulting L4/L5 moments exceeded those of the fully dynamic model by 25%.

In many industrial tasks static analyses may severely underestimate the demands of dynamic lifts. These results show that a reasonably inexpensive approach in lifting task analysis is to measure the dynamic forces of the load on the hands and to use these in an otherwise static model. This results in a conservative assessment of the injury risk of lifts at least of the type reported in this study.  相似文献   


5.
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.  相似文献   

6.
Mandibular distraction osteogenesis will lead to a change in muscle coordination and load transfer to the temporomandibular joints (TMJ). The objective of this work is to present and validate a rigid-body musculo-skeletal model of the mandible based on inverse dynamics for calculation of the muscle activations, muscle forces and TMJ reaction forces for different types of clenching tasks and dynamic tasks. This approach is validated on a symmetric mandible model and an application will be presented where the TMJ reaction forces during unilateral clenching are estimated for a virtual distraction patient with a shortened left ramus. The mandible model consists of 2 rigid segments and has 4 degrees-of-freedom. The model was equipped with 24 hill-type musculotendon actuators. During the validation experiment one subject was asked to do several tasks while measuring EMG activity, bite force and kinematics. The bite force and kinematics were used as input for the simulations of the same tasks after which the estimated muscle activities were compared with the measured muscle activities. This resulted in an average correlation coefficient of 0.580 and an average of the Mean Absolute Error of 0.109. The virtual distraction model showed a large difference in the TMJ reaction forces between left and right compared with the symmetric model for the same loading case. The present work is a step in the direction of building patient-specific mandible models, which can assess the mechanical effects on the TMJ before mandibular distraction osteogenesis surgery.  相似文献   

7.
The aim of this study is developing and validating a Deep Neural Network (DNN) based method for 3D pose estimation during lifting. The proposed DNN based method addresses problems associated with marker-based motion capture systems like excessive preparation time, movement obstruction, and controlled environment requirement. Twelve healthy adults participated in a protocol and performed nine lifting tasks with different vertical heights and asymmetry angles. They lifted a crate and placed it on a shelf while being filmed by two camcorders and a synchronized motion capture system, which directly measured their body movement. A DNN with two-stage cascaded structure was designed to estimate subjects’ 3D body pose from images captured by camcorders. Our DNN augmented Hourglass network for monocular 2D pose estimation with a novel 3D pose generator subnetwork, which synthesized information from all available views to predict accurate 3D pose. We validated the results against the marker-based motion capture system as a reference and examined the method performance under different lifting conditions. The average Euclidean distance between the estimated 3D pose and reference (3D pose error) on the whole dataset was 14.72 ± 2.96 mm. Repeated measures ANOVAs showed lifting conditions can affect the method performance e.g. 60° asymmetry angle and shoulder height lifting showed higher 3D pose error compare to other lifting conditions. The results demonstrated the capability of the proposed method for 3D pose estimation with high accuracy and without limitations of marker-based motion capture systems. The proposed method may be utilized as an on-site biomechanical analysis tool.  相似文献   

8.
An EMG-assisted, low-back, lifting model is presented which simulates spinal loading as a function of dynamic, asymmetric, lifting exertions. The purpose of this study has been to develop a model which overcomes the limitations of previous models including static or isokinetic mechanics, inaccurate predictions of muscle coactivity, static interpretation of myoelectric activity, and physiologically unrealistic or variable muscle force per unit area. The present model predicts individual muscle forces from processed EMG data, normalized as a function of trunk angle and asymmetry, and modified to account for muscle length and velocity artifacts. The normalized EMGs are combined with muscle cross-sectional area and intrinsic strength capacity as determined on a per subject basis, to represent tensile force amplitudes. Dynamic internal and external force vectors are employed to predict trunk moments, spinal compression, lateral and anterior shear forces. Data from 20 subjects performing a total of 2160 exertions showed good agreement between predicted and measured values under all trunk angle, asymmetry, velocity, and acceleration conditions. The design represents a significant step toward accurate, fully dynamic modeling of the low-back in multiple dimensions. The benefits of such a model are the insights provided into the effects of motion induced, muscle co-activity on spinal loading in multiple dimensions.  相似文献   

9.
Myeloid cell leukemia-1 (Mcl-1) has been a validated and attractive target for cancer therapy. Over-expression of Mcl-1 in many cancers allows cancer cells to evade apoptosis and contributes to the resistance to current chemotherapeutics. Here, we identified new Mcl-1 inhibitors using a multi-step virtual screening approach. First, based on two different ligand-receptor complexes, 20 pharmacophore models were established by simultaneously using ‘Receptor-Ligand Pharmacophore Generation’ method and manual build feature method, and then carefully validated by a test database. Then, pharmacophore-based virtual screening (PB-VS) could be performed by using the 20 pharmacophore models. In addition, docking study was used to predict the possible binding poses of compounds, and the docking parameters were optimized before performing docking-based virtual screening (DB-VS). Moreover, a 3D QSAR model was established by applying the 55 aligned Mcl-1 inhibitors. The 55 inhibitors sharing the same scaffold were docked into the Mcl-1 active site before alignment, then the inhibitors with possible binding conformations were aligned. For the training set, the 3D QSAR model gave a correlation coefficient r2 of 0.996; for the test set, the correlation coefficient r2 was 0.812. Therefore, the developed 3D QSAR model was a good model, which could be applied for carrying out 3D QSAR-based virtual screening (QSARD-VS). After the above three virtual screening methods orderly filtering, 23 potential inhibitors with novel scaffolds were identified. Furthermore, we have discussed in detail the mapping results of two potent compounds onto pharmacophore models, 3D QSAR model, and the interactions between the compounds and active site residues.  相似文献   

10.
This study aimed to develop, compare and validate two versions of a video analysis method for assessment of low back moments during occupational lifting tasks since for epidemiological studies and ergonomic practice relatively cheap and easily applicable methods to assess low back loads are needed. Ten healthy subjects participated in a protocol comprising 12 lifting conditions. Low back moments were assessed using two variants of a video analysis method and a lab-based reference method. Repeated measures ANOVAs showed no overall differences in peak moments between the two versions of the video analysis method and the reference method. However, two conditions showed a minor overestimation of one of the video analysis method moments. Standard deviations were considerable suggesting that errors in the video analysis were random. Furthermore, there was a small underestimation of dynamic components and overestimation of the static components of the moments. Intraclass correlations coefficients for peak moments showed high correspondence (>0.85) of the video analyses with the reference method. It is concluded that, when a sufficient number of measurements can be taken, the video analysis method for assessment of low back loads during lifting tasks provides valid estimates of low back moments in ergonomic practice and epidemiological studies for lifts up to a moderate level of asymmetry.  相似文献   

11.
A biomechanical model of the lumbosacral joint during lifting activities   总被引:5,自引:0,他引:5  
A biomechanical model of the lumbosacral region was constructed for the purpose of systematically studying the combined stresses and strains on the local ligaments, muscles and disc tissue during sagittal plane two-handed lifting. The model was validated in two ways. The first validation was a comparison of experimental study results with model predictions. In general predictions compared very reasonably with observed values of several authors with the exception of strain predictions on the articular ligaments. Second, a sensitivity analysis was performed over a wide range of lifting tasks. The predicted stress/strain values followed anticipated patterns and were of reasonable magnitudes. On the basis of the results of the sensitivity analysis it was concluded that typical lifting tasks can lead to excessive disc compressive forces, muscle moment generation requirements, and possibly lumbodorsal fascia strains. Conversely, annulus rupture of a healthy disc due to overstrain appears very unlikely.  相似文献   

12.
The development and validation of a virtual generic 3D model of the distal femur using computer graphical methods is presented. The synthesis of the generic model requires the following steps: acquisition of bony 3D morphology using standard computed tomography (CT) imaging; alignment of 3D models reconstructed from CT images with a common coordinate system; computer graphical sectioning of the models; extraction of bone contours from the image sections; combining and averaging of extracted contours; and 3D reconstruction of the averaged contours. The generic models reconstructed from the averaged contours of six cadaver femora were validated by comparing their surface geometry on a point to point basis with that of the CT reconstructed reference models. The mean errors ranged from 0.99 to 2.5 mm and were in agreement with the qualitative assessment of the models.  相似文献   

13.
A dynamic biomechanical evaluation of lifting maximum acceptable loads   总被引:2,自引:0,他引:2  
A biomechanical evaluation of the job-related stresses imposed upon a worker is a potential means of reducing the high incidence rates of manual material handling injuries in industry. A biomechanical model consisting of seven rigid links joined at six articulations has been developed for this purpose. Using data from cinematographic analysis of lifting motions the model calculates: (1) body position from articulation angles, (2) angular velocities and accelerations, (3) inertial moments and forces, and (4) reactive moments and forces at each articulation, including the L5/S1 joint. Results indicated effects of the common task variables. Larger load and box sizes increased the rise times and peak values of both vertical ground reaction forces and predicted L5/S1 compressive forces. However, boxes with handles resulted in higher L5/S1 compressive forces than for boxes without handles. Also, in lifting the larger boxes the subjects did not sufficiently compensate with reduced box weights in order to maintain uniform L5/S1 compressive forces. Smoothed and rectified EMG of erector spinae muscles correlated significantly with L5/S1 compressive forces, while predicted and measured vertical ground reaction forces also correlated significantly, indicating the validity of the model as a tool for predicting job physical stresses.  相似文献   

14.
Current inverse dynamics models of the upper extremity (UE) are limited for the measurement of Lofstrand crutch-assisted gait. The objective of this study is to develop, validate, and demonstrate a three-dimensional (3-D) UE motion assessment system to quantify crutch-assisted gait in children. We propose a novel 3-D dynamic model of the UEs and crutches for quantification of joint motions, forces, and moments during Lofstrand crutch-assisted gait. The model is composed of the upper body (i.e., thorax, upper arms, forearms, and hands) and Lofstrand crutches to determine joint dynamics of the thorax, shoulders, elbows, wrists, and crutches. The model was evaluated and applied to a pediatric subject with myelomeningocele (MM) to demonstrate its effectiveness in the characterization of crutch gait during multiple walking patterns. The model quantified UE dynamics during reciprocal and swing-through crutch-assisted gait patterns. Joint motions and forces were greater during swing-through gait than reciprocal gait. The model is suitable for further application to pediatric crutch-user populations. This study has potential for improving the understanding of the biomechanics of crutch-assisted gait and may impact clinical intervention strategies and therapeutic planning of ambulation.  相似文献   

15.
The development and validation of a virtual generic 3D model of the distal femur using computer graphical methods is presented. The synthesis of the generic model requires the following steps: acquisition of bony 3D morphology using standard computed tomography (CT) imaging; alignment of 3D models reconstructed from CT images with a common coordinate system; computer graphical sectioning of the models; extraction of bone contours from the image sections; combining and averaging of extracted contours; and 3D reconstruction of the averaged contours.

The generic models reconstructed from the averaged contours of six cadaver femora were validated by comparing their surface geometry on a point to point basis with that of the CT reconstructed reference models. The mean errors ranged from 0.99 to 2.5 mm and were in agreement with the qualitative assessment of the models.  相似文献   

16.
The objective of this study was to investigate the low-back loading during common patient-handling tasks. Ten female health care workers without formal training in patient handling performed nine patient-handling tasks including turning, lifting and repositioning a male stroke patient. The low-back loading was quantified by net moment, compression, and shear forces at the L4/L5 joint, measured muscle activity (EMG) in erector spinae muscles and rate of perceived exertion (RPE; Borg scale). The experiments were videotaped with a 50Hz video system using five cameras, and the ground and bedside reaction forces of the health care worker were recorded by means of force platforms and force transducers on the bed. The biomechanical load was calculated using a dynamic 3D seven-segment model of the lower part of the body, and the forces at the L4/L5 joint were estimated by a 14 muscles cross-sectional model of the low back (optimisation procedure). Compression force and torque showed high task dependency whereas the EMG data and the RPE values were more dependent on the subject. The peak compression during two tasks involving lifting the patient (4132/4433N) was significantly higher than all other tasks. Four tasks involving repositioning the patient in the bed (3179/3091/2932/3094N) did not differ, but showed higher peak compression than two tasks turning the patient in the bed (1618/2197N). Thus, in this study the patient-handling tasks could be classified into three groups-characterised by lifting, repositioning or turning-with different levels of peak net torque and compression at the L4/L5 joint.  相似文献   

17.
Video-based field methods that estimate L5/S1 net joint moments from kinematics based on interpolation in the sagittal plane of joint angles alone can introduce a significant error on the interpolated joint angular trajectory when applied to asymmetric dynamic lifts. Our goal was to evaluate interpolation of segment Euler angles for a wide range of dynamic asymmetric lifting tasks using cubic spline methods by comparing the interpolated values with the continuous measured ones. For most body segments, the estimated trajectories of segment Euler angles have less than 5° RMSE (in each dimension) with 5-point cubic spline interpolation when there is no measurement error of interpolation points. Sensitivity analysis indicates that when the measurement error exists, the root mean square error (RMSE) of estimated trajectories increases. Comparison among different lifting conditions showed that lifting a load from a high initial position yielded a smaller RMSE than lifting from a low initial position. In conclusion, interpolation of segment Euler angles can provide a robust estimation of segment angular trajectories during asymmetric lifting when measurement error of interpolation points can be controlled at a low level.  相似文献   

18.
Simultaneous motion of the scapula and humerus is widely accepted as a feature of normal upper limb movement, however this has usually been investigated under conditions in which purposeful, functional tasks were not considered. The aim of this study was to investigate the synchrony and coordination of the constituent 3D movements of the shoulder girdle and trunk, during a functional activity. 45 healthy women, aged between 20 and 80 years, performed a simple lifting task, moving a loaded box from a shelf at waist level to one at shoulder level and then reversed the movement, during which the linear and angular motions of the scapulae, upper and lower thoracic spine and upper limbs were monitored and analysed using cross-correlation techniques. Results indicated a close and consistent set of coordinated movement patterns, which suggest biomechanical invariance in the responses of the structures adjacent to the upper limb during such a lifting task. These scapulohumeral relationships were, however, more constant and phase-locked when there was a specific purpose to the movement than during periods in which the arm was lowered without load. There were no age-related differences in any movement responses.  相似文献   

19.
Low back loading during occupational lifting is thought to be an important causative factor in the development of low back pain. In order to regulate spinal loading in the workplace, it is necessary to measure it accurately. Various methods have been developed to do this, but each has its own limitations, and none can be considered a "gold standard". The purpose of the current study was to compare the results of three contrasting techniques in order to gain insight into possible sources of error to which each is susceptible. The three techniques were a linked segment model (LSM), an electromyographic (EMG)-based model, and a neural network (NN) that used both EMG and inertial sensing techniques. All three techniques were applied simultaneously to calculate spinal loading when eight volunteers performed a total of eight lifts in a laboratory setting. Averaged results showed that, in comparison with the LSM, the EMG technique calculated a 25.5+/-33.4% higher peak torque and the NN technique a 17.3+/-10.5% lower peak torque. Differences between the techniques varied with lifting speed and method of lifting, and could be attributed to differences in anthropometric assumptions, antagonistic muscle activity, damping of transient force peaks by body tissues, and, specific to the NN, underestimation of trunk flexion. The results of the current study urge to reconsider the validity of other models by independent comparisons.  相似文献   

20.
The problem of injuries in manual materials handling remains a big concern in industrialized countries. It has become imperative in occupational biomechanics to extend the analyses to all pertinent factors involved in working tasks and to adopt an experimental approach leading to the understanding of the relative demands imposed simultaneously on all body joints. The evaluation of joint muscular work and the processes of energy generation, absorption and transfer appears promising as a tool in the detection of risk factors in working tasks. The present study consisted of evaluating two tasks (lifting and lowering) performed at five different heights (from 15 to 185 cm) with five different loads (from 3.3 to 22.0 kg). The subjects were eight experienced workers from a food product warehouse. Cinematography techniques and two AMTI force platforms were used to collect the data. Dynamic and planar segmental analyses were performed to calculate the net muscular moments at the joints, and work was calculated from the integration of muscular power. Factorial analyses of variance with repeated measures were performed on the dependent variables to evaluate the main effects of tasks, loads, and heights (for lifting and for lowering) and the interactions. The results revealed the adoption of different movement strategies in the handling of heavier loads. In the first, a larger emphasis of energy transfer and movement economy; in the second, a reduction in the relative contribution of the shoulders to the detriment of an increased participation of the lower back and hips was found. The comparison between lifting and lowering tasks indicated that lifting was only slightly more demanding than lowering for maximum muscular moments (about 15%) but much more so for mechanical work (about 40%); however, the nature of the efforts in eccentric contractions suggests that the lowering of heavy loads may be risky. Finally, the results revealed the deviation of height of handling from the waist level to be a significant factor. Handling at lower heights was considerably more demanding but the work was shared by several joints, mainly by the hips and lower back (about 70%); on the other hand, in handling above the waist, the work efforts were concentrated on the upper limbs (about 80%). In most cases, the participation of lower limbs was minimal and some movement strategies are suggested for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号