首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
羊茅属植物内生真菌研究进展   总被引:2,自引:0,他引:2  
感染内生真菌的羊茅属植株在畜牧业和草坪业上具有重要的生态和经济意义。关于内生真菌与羊茅属植株互利共生的关系已有大量研究,就已报道的有关羊茅属内生真菌种类、内生真菌促进羊茅属植株生长发育以及内生真菌提高羊茅属植株抵抗生物胁迫和非生物胁迫的研究做一综述,指出羊茅属内生真菌研究中存在的问题并做出展望,以期更好地利用我国羊茅属内生真菌资源。  相似文献   

2.
通过田间试验研究了种植方式(玉米单作、大豆单作、玉米-大豆套作)和施氮水平(0、180、240 N kg·hm-2)对玉米和大豆产量、养分吸收及氮肥利用的影响.结果表明:与单作相比,玉米-大豆套作体系中玉米籽粒产量、地上部植株N、P、K吸收量及收获指数略有降低,而大豆籽粒产量、地上部植株N、P、K吸收量及收获指数显著提高.玉米-大豆套作系统的套作优势随施氮量的增加而降低,与当地农民常规施氮量(240 kg·hm-2)相比,减量施氮(180kg·hm-2)处理下玉米和大豆产量、经济系数,以及N、P、K吸收量和收获指数、氮肥农学利用率、氮肥吸收利用率显著提高,土壤氮贡献率降低;与不施氮相比,减量施氮降低了玉米带土壤的全N、全P含量,提高了大豆带土壤的全N、全P、全K含量和玉米带土壤的全K含量.减量施氮水平下,玉米-大豆套作系统的周年籽粒总产量、地上部植株N、P、K总吸收量均高于玉米和大豆单作,土地当量比(LER)达2.28;玉米-大豆套作系统的氮肥吸收利用率比玉米单作高20.2%,比大豆单作低30.5%,土壤氮贡献率比玉米和大豆单作分别低20.0%和8.8%.玉米-大豆套作减量一体化施肥有利于提高系统周年作物产量和氮肥利用率.  相似文献   

3.
尽管抗生素常常对离体植物培养物有毒性,但仍有大量关于用抗真菌剂和抗细菌剂促进植物组织培养物再生的报道。 苯味氨甲酯是某些商品杀真菌剂的一种活性成分。Gent大学P.C.Debergh等人研究发现,这种物质除具有杀真菌剂的活性,防止螨虫或蓟马对真菌污染物的传播外,还可用它促进植株再生,作为Goryline  相似文献   

4.
草坪草-高羊茅遗传育种研究进展   总被引:4,自引:0,他引:4  
随着我国草坪业的快速发展 ,草坪草遗传育种工作越来越受到人们的关注。简要介绍了高羊茅的育种历史和现状 ,并对高羊茅植株再生体系的建立及遗传转化方面的研究进展进行了综述。此外 ,还提出了我国高羊茅育种的几点建议。  相似文献   

5.
以感染内生真菌(endophyte-infected,EI)和不感染内生真菌(endophyte-free,EF)的高羊茅(Festuca arundinacea Schreb.)为材料,在温室沙培条件下研究内生真菌对高羊茅适应缺磷及利用不同形态磷肥的影响。结果表明,1)缺磷条件下,高羊茅EI和EF植株生长差异不显著;正常供磷条件下,高羊茅EI植株拥有更多分蘖数和绿叶数。说明正常供磷条件下内生真菌改善了宿主高羊茅的生长。2)与水溶性磷相比,高羊茅根有机酸和酸性磷酸酶(acid phosphatase,APase)活性在难溶性磷条件下显著增加,而根总酚含量无显著变化。在水溶性磷条件下,高羊茅EI植株根总酚含量显著高于EF植株,此时EI植株比EF植株拥有更多分蘖数和绿叶数,说明在水溶性磷条件下内生真菌对宿主地上部生长具有一定贡献。在难溶性磷条件下,虽然高羊茅EI植株根总酚含量仍然高于EF植株,但同时EI植株根有机酸含量显著低于EF植株,因此内生真菌感染只是增大了宿主植物的根冠比,而对分蘖数和绿叶数等无显著影响,说明内生真菌对宿主利用难溶性磷贡献不大。可见,内生真菌对宿主植物的生长在水溶性磷条件下更有利。  相似文献   

6.
盐生境下硅对坪用高羊茅生物学特性的影响   总被引:2,自引:0,他引:2  
刘慧霞  郭兴华  郭正刚 《生态学报》2011,31(23):7039-7046
干旱半干旱区草坪绿地的长期灌溉容易引发土壤次生盐渍化,提高草坪草在盐生境下的生长发育能力是应对土壤次生盐渍化的主要途径之一.采用盆栽试验研究了盐生境下硅对坪用高羊茅(Festuca arundinaea)生物学特性的影响.结果表明,向盐生境土壤中添加不同浓度硅均提前高羊茅出苗时间2d,加快出苗速率,增加出苗总数,提高保苗率,且总出苗率和保苗率随着硅浓度增加而显著增大(P<0.05),这说明盐生境下向土壤添加硅改善了幼苗完全死亡的现象.盐生境下硅显著增加了高羊茅叶长,株高和分蘖数,但对叶宽影响不显著,说明硅能够促进高羊茅生长,但对草坪绿地的质地影响不大.虽然硅能显著增加高羊茅总生物量(P<0.05),但较低浓度时促进其茎叶生长,高浓度促进其根系生长.硅在高羊茅体内的沉积量随施入硅增加而增大,但其茎叶和根系内硅含量不超过3.0%,且根系内硅含量约为茎叶内硅含量的2倍.结果显示,硅提高了坪用高羊茅在盐生境下的适应能力,这为以后草坪绿地管理中应对土壤潜在盐渍化的问题提供了一定的科学依据.  相似文献   

7.
盆栽条件下研究了施用杀线剂(克线磷,67mg·kg-1干土)和干热(105℃,2h)两种杀线措施对小麦生长和N、P养分吸收的影响。杀线剂对土壤中线虫的平均杀灭率约为80%, 干热处理的杀灭率为100%. 在杀线剂处理中,苗期至抽穗期小麦生物量、拔节期至成熟期植株含N量、全生育期植株吸N量以及抽穗和成熟期吸P量均显着低于对照。土壤干热处理后抽穗和成熟期小麦的生物量、含N量及N、P吸收量也比对照显着降低。两种杀线处理植株地上部生物量和N、P吸收量与相应处理全株变化趋势基本一致。但杀灭线虫对植株含P量影响较小。分析杀线虫后小麦生长和养分吸收受抑主要与土壤有机氮的矿化作用减弱、微生物活动产生的植物生长促进物质降低有关  相似文献   

8.
高羊茅为很重要的多年生冷季型草坪草,生物技术在其品种改良中具有很大的应用潜力。本文对高羊茅植株再生体系的建立及遗传转化方面的研究进展进行了综述。同时,对高羊茅转基因研究中存在的问题和前景作了讨论。  相似文献   

9.
在不同土壤肥力条件下,研究了施氮量对小麦氮素吸收、转化及籽粒产量和蛋白质含量的影响。结果表明,增施氮肥可以提高小麦各生育阶段的吸氮强度,尤以生育后期提高的幅度为大认为是增施氮肥提高小麦籽粒产量和蛋白质含量的基础,增施氮肥虽提高了小麦植株的吸氮强度。吸氮量增加,但开花后营养器官氮素向籽粒中的转移率降低,增施氮肥不仅促进了小麦植株对肥料氮的吸收,而且也促进了对土壤氮的吸收,并讨论了在高、低土壤肥力条件下氮肥合理运筹的问题。  相似文献   

10.
以日本结缕草草坪为试材,采用田间试验,研究在不同践踏胁迫下,施用氮肥对草坪生长的影响。结果表明,施氮肥有利于受践踏草坪的恢复生长,在不同程度践踏胁迫下,施氮素8 g/m2,可不同程度地增加草坪的密度、株高生长量和地上生物量;总叶绿素含量比对照明显增加。  相似文献   

11.
Acremonium coenophialum, a fungal endosymbiont in tall fescue, is responsible for the production of alkaloid toxins. Animals grazing endophyte-infected tall fescue often show toxicosis. In marginal environments, the endophyte is important for long-term survival of tall fescue. Few differences in endophyte isolates from individual tall fescue plants have been reported. To aid development of a toxicosis-free tall fescue, it is important to identify differences in endophyte isolates. This report describes variation in nitrogen utilization in a defined culture medium by endophyte isolates from Kentucky-31 tall fescue. Overall, the best nitrogen sources for dry weight production of mycelium were proline and potassium nitrate. Thirty-four isolates grown on agar-solidified defined media with single nitrogen sources showed variation in nitrogen utilization. Fifty percent of the isolates were unable to utilize two or more amino acids. Manipulation of endophyte variation could lead to development of a toxicosis-free tall fescue cultivar.  相似文献   

12.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

13.
Changes in light quality occur naturally within a canopy when a plant grows from unshaded to shaded conditions, and the reverse occurs after a cut that reduces shading. These changes in light quality could be responsible for the variation in leaf elongation and appearance rates of grasses. The role of blue light in leaf growth was investigated in tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.). Leaf length was measured daily following a decrease or an increase in blue light to evaluate effects on duration of leaf growth, leaf elongation and the rate of leaf appearance rate. A reduction in blue light increased sheath length by 8 to 14% and lamina length by 6 to 12% for both species. These increases could be reversed by enrichment of blue light. With low blue light treatment, final leaf length was increased due to a greater leaf elongation rate. In tall fescue, but not in perennial ryegrass, this effect was coupled with a greater phyllochron and a longer duration of leaf elongation. Development of successive leaves on a tall fescue tiller were co-ordinated. A decrease in blue light increased the duration of elongation in the oldest growing leaf and also delayed the appearance of a new leaf, maintaining this co-ordination. We conclude that final leaf size and phyllochron for tall fescue can be significantly modified by blue light. Perennial ryegrass appeared less responsive, except for displaying longer sheaths and laminae in low blue light, as also occurred for tall fescue. We hypothesize that leaf length could be regulated by the quality of the light reaching the growing region itself.  相似文献   

14.
Summary An investigation was designed to examine the nature and distribution of nitrogen in tall fescue (Festuca arundinacea Schreb.) as influenced by water regime and N fertility under controlled environment conditions. Three replicates of 10 ppm and 110 ppm N were prepared for both adequately watered and water stress treatments of vegetatively propagated tall fescue. Herbage samples were lyophilized and soluble protein extracted in aqueous buffer and separated from low molecular weight N compounds. Two insoluble fractions (RI, cellular and structural fragments; RII, organellar residue, primarily chloroplasts) and two soluble fractions (SI, soluble protein; SII, low molecular weight compounds) were characterized by Kjeldahl N and acid-hydrolyzable amino-acid analyses.Mild water stress increased the crude protein (CP) concentration of tall fescue, especially under limited N conditions. Nitrogen was redistributed among the fractions when tall fescue was water stressed, regardless of N level. Under adequate water conditions at both N levels, about 30% of the soluble plant N was found in SI but under water stress, SI accounted for 50% of the soluble N. This pattern indicates a conservation of intact, nitrogenous material possibly due to decreased proteolysis under mild water stress conditions. The greatest proportion of total N occurred in fraction RI, regardless of water level, 10 N being greater than 110 N. Organellar residue (RII) accounted for about 18.5% of the total N regardless of treatment. Non-protein, non amino acid N concentrations were greatest under 110 N water stress conditions. Nitrate N concentrations contributed to less than one percent of the non-protein non-amino acid nitrogen.Component analysis of N in tall fescue, empirically determined as CP, elucidated the redistribution of nitrogenous constituents in response to N fertilization and water regime which may alter nutritive quality and/or plant survival. Accumulation of low molecular weight N compounds under water stress conditions could relate to animal health and fungal endophyte problems associated with tall fescue.  相似文献   

15.
T. M. Tibbets  S. H. Faeth 《Oecologia》1999,118(3):297-305
Endophytic fungi, particularly in the genus Neotyphodium, are thought to interact mutualistically with host grasses primarily by deterring herbivores and pathogens via production of alkaloidal mycotoxins. Little is known, however, about how these endophytes interact with host plants and herbivores outside the realm of agronomic forage grasses, such as tall fescue, and their livestock grazers or invertebrate pest herbivores. We tested the effects of Neotyphodium inhabiting introduced tall fescue and native Arizona fescue on preference, survival, and performance of the leaf-cutting ant, Acromyrmex versicolor, an important generalist herbivore in the southwestern United States. In a choice experiment, we determined preferences of foraging queens and workers for infected and uninfected tall fescue and Arizona fescue. In a no-choice experiment, we determined queen survival, worker production, and size of fungal gardens for foundress queens reared on diets of infected and uninfected tall fescue and Arizona fescue. Foraging workers and queens did not significantly prefer either uninfected tall fescue or Arizona fescue relative to infected grasses, although ants tended to harvest more uninfected than infected tall fescue and more infected than uninfected Arizona fescue. Queen survivorship and length of survival was greater on uninfected tall fescue, uninfected Arizona fescue, and infected Arizona fescue than on infected tall fescue or the standard diet of palo verde and mesquite leaves. No queens survived beyond 6 weeks of the study when fed the infected tall fescue diet, in contrast to the effects of the other diets. Likewise, worker production was much lower and fungal garden size much smaller on infected tall fescue than in all other treatments, including the standard diet. In general, ant colonies survived and performed better on uninfected tall fescue and infected and uninfected Arizona fescue than standard diets of palo verde and mesquite leaves. The interaction of Neotyphodium with its host grasses is highly variable and these endophytes may increase, not alter, or even decrease resistance to herbivores. The direction of the interaction depends on host and fungal genotype, herbivore species, and environmental factors. The presence of endophytes in most, if not all, host plants suggests that endophytes may alter foraging patterns, performance, and survival of herbivores, such as leaf-cutting ants, but not always in ways that increase host plant fitness. Received: 27 October 1998 / Accepted: 19 October 1998  相似文献   

16.
Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar improvement programs.  相似文献   

17.
The aim of our work is to investigate the changes in phenolic level, PAL activity and heat production rate induced during pre-hardening at 12°C and cold acclimation at 2°C of the forage grasses Festulolium, meadow fescue, tall fescue and Italian ryegrass in relation to their resistance to snow mould caused by Microdochium nivale. Meadow fescue and tall fescue were most resistant to M. nivale infection, while Italian ryegrass demonstrated the least resistance to this fungus inoculation. Festulolium, meadow fescue and tall fescue responded similarly to low temperature, while Italian ryegrass demonstrated considerable disturbance of energy balance and lower phenolic concentration, which could explain a higher susceptibility of the latter species to infection by M. nivale. The enhanced level of phenolic compounds, probably utilised for cell wall lignification as well as equilibrium of the metabolic activity observed in meadow fescue and tall fescue, is very important for both cold and pathogen-resistance mechanisms. The studied Festulolium cultivar ‘Felopa’, a hybrid of the Lolium multiflorum and Festuca pratensis genomes, was characterised by changes in biochemical parameters similar to the resistant meadow fescue and tall fescue.  相似文献   

18.
Four experiments were conducted to assess the effect of foliar applications of various nutrient solutions on the phylloplane yeast community of tall fescue (Festuca arundinacea Schreb.). In the first three experiments, increasing concentrations of sucrose (2–16%), yeast extract (0.5–2.5%), and sucrose plus yeast extract (2.5–18.5% total) were applied and the yeast colony forming units (cfu) enumerated 14 h later by dilution plating. Significant positive linear relationships were observed between the number of yeast cfu and applications of both yeast extract and sucrose plus yeast extract. Foliar applications of sucrose alone had no significant effect on yeast community abundance, indicating that phylloplane yeasts of turfgrass are not limited by the amount or availability of carbohydrates. In the fourth experiment, five different solutions were applied to tall fescue to investigate the response of the yeast community to organic and inorganic nitrogen sources. Tryptone or yeast extract, both with considerable amino acid composition, significantly increased the yeast population, while yeast nitrogen base (with or without amino acids) and ammonium sulfate had no affect on yeast abundance. These results suggest that organic nitrogen stimulate yeast community growth and development on the phylloplane of tall fescue, while carbohydrates, inorganic nitrogen, and non-nitrogenous nutrients have little positive effect.  相似文献   

19.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

20.
Sinclair T  Fiscus E  Wherley B  Durham M  Rufty T 《Planta》2007,227(1):273-276
There is a lack of information on plant response to multifactor environmental variability including the interactive response to temperature and atmospheric humidity. These two factors are almost always confounded because saturated vapor pressure increases exponentially with temperature, and vapor pressure deficit (VPD) could have a large impact on plant growth. In this study using climate controlled mini-greenhouses, we examined the interacting influence of temperature and VPD on long-term growth of tall fescue (Festuca arundinacea Schreb), a cool season grass. From past studies it was expected that growth of tall fescue would decline with warmer temperatures over the range of 18.5–27°C, but growth actually increased markedly with increasing temperature when VPD was held constant. In contrast, growth declined in experiments where tall fescue was exposed to increasing VPD and temperature was held constant at 21°C. The inhibited growth appears to be in response to a maximum transpiration rate that can be supported by the tall fescue plants. The sensitivity to VPD indicates that if VPD remains stable in future climates as it has in the past, growth of tall fescue could well be stimulated rather than decreased by global warming in temperate climate zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号