首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Registering substrate reaction forces from primates during climbing requires the design and construction of customized recording devices. The technical difficulties in constructing a reliable apparatus hinder research on the kinetics of primate locomotion. This is unfortunate since arboreal locomotion, especially vertical climbing, is an important component of the hominoid locomotor repertoire. In this technical paper, we describe a custom-built climbing pole that allows recordings of dynamic 3-dimensional forces during locomotion on horizontal and sloping substrates and during vertical climbing. The pole contains an instrumented section that can readily be modified and enables us to register forces of a single limb or multiple limbs in a broad range of primates. For verification, we constructed a similar set-up (which would not be usable for primates) using a conventional force plate. Data for a human subject walking on both set-ups were compared. The experimental set-up records accurate and reliable substrate reaction forces in three orthogonal directions. Because of its adjustability, this type of modular set-up can be used for a great variety of primate studies. When combining such kinetic measurements together with kinematic information, data of great biomechanical value can be generated. These data will hopefully allow biological anthropologists to answer current questions about primate behaviours on vertical substrates.  相似文献   

2.
Legged locomotion of the Eurasian nuthatch Sitta europaea on horizontal and vertical substrates was examined using field observations and experiments. Although previous studies have reported that nuthatches use 'walking' on vertical substrates, we found that they usually used 'hopping' on both vertical and horizontal substrates. When climbing up a vertical substrate, the feet were staggered in position and small phase differences were observed between the left and right leg movements in the gait. In upward climbing, the body was inclined towards the substrate during the first stance phase similar to other tree-trunk climbers, but the tail was not used for helping body rotation unlike most tree-trunk climbers. The staggered position of the feet may allow the legs to play different roles in pulling towards and pushing away from the substrate. In downward climbing, the feet were staggered in position, but the phase difference was quite small. In field observations, the Eurasian nuthatch preferred to move vertically, rather than in an inclined direction.  相似文献   

3.
Studies of skeletal pathology indicate that injury from falling accounts for most long bone trauma in free‐ranging primates, suggesting that primates should be under strong selection to manifest morphological and behavioral mechanisms that increase stability on arboreal substrates. Although previous studies have identified several kinematic and kinetic features of primate symmetrical gaits that serve to increase arboreal stability, very little work has focused on the dynamics of primate asymmetrical gaits. Nevertheless, asymmetrical gaits typify the rapid locomotion of most primates, particularly in smaller bodied taxa. This study investigated asymmetrical gait dynamics in growing marmosets and squirrel monkeys moving on terrestrial and simulated arboreal supports (i.e., an elevated pole). Results showed that monkeys used several kinematic and kinetic adjustments to increase stability on the pole, including reducing peak vertical forces, limiting center of mass movements, increasing substrate contact durations, and using shorter and more frequent strides (thus limiting disruptive whole‐body aerial phases). Marmosets generally showed greater adjustment to pole locomotion than did squirrel monkeys, perhaps as a result of their reduced grasping abilities and retreat from the fine‐branch niche. Ontogenetic increases in body size had relatively little independent influence on asymmetrical gait dynamics during pole locomotion, despite biomechanical theory suggesting that arboreal instability is exacerbated as body size increases relative to substrate diameter. Overall, this study shows that 1) symmetrical gaits are not the only stable way to travel arboreally and 2) small‐bodied primates utilize specific kinematic and kinetic adjustments to increase stability when using asymmetrical gaits on arboreal substrates. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
The locomotion of primates differs from that of other mammals in three fundamental ways. During quadrupedal walking, primates use diagonal sequence gaits, protract their arms more at forelimb touchdown, and experience lower vertical substrate reaction forces on their forelimbs relative to their hindlimbs. It is widely held that the unusual walking gaits of primates represent a basal adaptation for movement on thin, flexible branches and reflect a major change in the functional role of the forelimb. However, little data on nonprimate arboreal mammals exist to test this notion. To that end, we examined the gait mechanics of the woolly opossum (Caluromys philander), a marsupial convergent with small-bodied prosimians in ecology, behavior, and morphology. Data on the footfall sequence, relative arm protraction, and peak vertical substrate reaction forces were obtained from videotapes and force records for three adult woolly opossums walking quadrupedally on a wooden runway and a thin pole. For all steps recorded on both substrates, woolly opossums always used diagonal sequence walking gaits, protracted their arms beyond 90 degrees relative to horizontal body axis, and experienced peak vertical substrate reaction forces on forelimbs that were significantly lower than on hindlimbs. The woolly opossum is the first nonprimate mammal to show locomotor mechanics that are identical to those of primates. This case of convergence between primates and a committed fine-branch, arboreal marsupial strongly implies that the earliest primates evolved gait specializations for fine-branch locomotion, which reflect important changes in forelimb function.  相似文献   

5.
Vertical climbing is widely accepted to have played an important role in the origins of both primate locomotion and of human bipedalism. Yet, only a few researchers have compared climbing mechanics in quadrupedal primates that vary in their degree of arboreality. It is assumed that primates using vertical climbing with a relatively high frequency will have morphological and behavioral specializations that facilitate efficient climbing mechanics. We test this assumption by examining whether time spent habitually engaged in climbing influences locomotor parameters such as footfall sequence, peak forces, and joint excursions during vertical climbing. Previous studies have shown that during climbing, the pronograde and semiterrestrial Macaca fuscata differs in these parameters compared to the more arboreal and highly specialized, antipronograde Ateles geoffroyi. Here, we examine whether a fully arboreal, quadrupedal primate that does not regularly arm-swing will exhibit gait and force distribution patterns intermediate between those of Macaca fuscata and Ateles geoffroyi. We collected footfall sequence, limb peak vertical forces, and 3D hindlimb excursion data for Macaca fascicularis during climbing on a stationary pole instrumented with a force transducer. Results show that footfall sequences are similar between macaque species, whereas peak force distributions and hindlimb excursions for Macaca fascicularis are intermediate between values reported for M. fuscata and Ateles geoffroyi. These results support the notion that time spent climbing is reflected in climbing mechanics, even though morphology may not provide for efficient mechanics, and highlight the important role of arboreal locomotor activity in determining the pathways of primate locomotor evolution.  相似文献   

6.
Several features that appear to differentiate the walking gaits of most primates from those of most other mammals (the prevalence of diagonal-sequence footfalls, high degrees of humeral protraction, and low forelimb vs. hindlimb peak vertical forces) are believed to have evolved in response to requirements of locomotion on thin arboreal supports by early primates that had developed clawless grasping hands and feet. This putative relationship between anatomy, behavior, and ecology is tested here by examining gait mechanics in the common marmoset (Callithrix jacchus), a primate that has sharp claws and reduced pedal grasping, and that spends much of its time clinging on large trunks. Kinematic and kinetic data were collected on three male Callithrix jacchus as they walked across a force platform attached to the ground or to raised horizontal poles. The vast majority of all walking gaits were lateral-sequence. For all steps, the humerus was retracted (<90 degrees relative to a horizontal axis) or held in a neutral (90 degrees ) position at forelimb touchdown. Peak vertical forces on the forelimb were always higher than those on the hindlimb. These three features of the walking gaits of C. jacchus separate it from any other primate studied (including other callitrichids). The walking gaits of C. jacchus are mechanically more similar to those of small, nonprimate mammals. The results of this study support previous models that suggest that the unusual suite of features that typify the walking gaits of most primates are adaptations to the requirements of locomotion on thin arboreal supports. These data, along with data from other primates and marsupials, suggest that primate postcranial and locomotor characteristics are part of a basal adaptation for walking on thin branches.  相似文献   

7.
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches. However, the functional significance of DS gait remains largely hypothetical. The study presented here tests hypotheses about the functional significance of DS gait by analyzing the gait mechanics of a primate that alternates between DS and lateral sequence (LS) gaits, Cebus apella. Kinematic and kinetic data were gathered from two subjects as they moved across both terrestrial and simulated arboreal substrates. These data were used to test four hypotheses: (1) locomotion on arboreal supports is associated with increased use of DS gait, (2) DS gait is associated with lower peak vertical substrate reaction forces than LS gait, (3) DS gait is associated with greater forelimb/hind limb differentiation in force magnitudes, and (4) DS gait offers increased stability. Our results indicate that animals preferred DS gait on the arboreal substrate, and LS gait while on the ground. Peak vertical substrate reaction forces showed a tendency to be lower in DS gait, but not consistently so. Pole ("arboreal") forces were lower than ground forces in DS gait, but not in LS gait. The preferred symmetrical gait on both substrates was a grounded run or amble, with the body supported by only one limb throughout most of the stride. During periods of bilateral support, the DS gait had predominantly diagonal support couplets. This benefit for stability on an arboreal substrate is potentially outweighed by overstriding, its associated ipsilateral limb interference in DS gait and hind foot positioning in front of the hand on untested territory. DS gait also did not result in an optimal anchoring position of the hind foot under the center of mass of the body at forelimb touchdown. In sum, the results are mixed regarding the superiority of DS gait in an arboreal setting. Consequently, the notion that DS gait is an ancestral adaptation of primates, conditioned by the selection demands of an arboreal environment, remains largely hypothetical.  相似文献   

8.
Vertical climbing is central to theories surrounding the locomotor specialisations of large primates. In this paper, we present spatiotemporal gait parameters obtained from video recordings of captive spider monkeys (Ateles fusciceps robustus) and woolly monkeys (Lagothrix lagotricha) in semi-natural enclosures, with the aim of discovering the influence of body weight and differences in general locomotor behaviour on vertical climbing kinematics on various substrates. Results show that there are only few differences between gait parameters of climbing on thin trees, vertical and oblique ropes, while climbing on large-diameter trees differs considerably, reflecting the higher costs of locomotion on the latter. At the same speed, Ateles takes longer strides and the support phase takes a smaller percentage of cycle duration than in Lagothrix. Footfall patterns are more diverse in Ateles and include a higher proportion of ipsilateral limb coupling. Compared to other primates, the gait characteristics of vertical climbing of atelines most closely resemble those of African apes.  相似文献   

9.
The study of the locomotion and postures of arboreal squirrels may provide important contextual information on the evolution of the morphology and ecology of sciurids. In this context, we studied the positional behaviour and habitat use of four adult European red squirrels (Sciurus vulgaris L.) in a mixed coniferous forest in northern Greece. Our results show that, during the study period, S. vulgaris extensively used the forest canopy and the terminal branch zone. The use of small and medium supports of all orientations was also particularly frequent. The positional profile of the species was characterized by the dominance of quadrupedal, clawed and airborne locomotion along with seated and standing postures. Quadrupedalism and sitting appeared to promote terminal branch use for food access and manipulation, while claw climbing favored vertical ranging and retreat to trees after terrestrial foraging. Finally, leaping reduced energetic costs during travelling between food sites within the relatively dispersed forest. These results and those of previous research on the positional behaviour of other squirrels reveal several trends related to body size, arboreal or gliding habits and tropical or temperate forest distribution and contribute to the understanding of evolutionary novelty in multiple levels within the sciurid radiation.  相似文献   

10.
Metabolic costs of resting and locomotion have been used to gain novel insights into the behavioral ecology and evolution of a wide range of primates; however, most previous studies have not considered gait‐specific effects. Here, metabolic costs of ring‐tailed lemurs (Lemur catta) walking, cantering and galloping are used to test for gait‐specific effects and a potential correspondence between costs and preferred speeds. Metabolic costs, including the net cost of locomotion (COL) and net cost of transport (COT), change as a curvilinear function of walking speed and (at least provisionally) as a linear function of cantering and galloping speeds. The baseline quantity used to calculate net costs had a significant effect on the magnitude of speed‐specific estimates of COL and COT, especially for walking. This is because non‐locomotor metabolism constitutes a substantial fraction (41–61%, on average) of gross metabolic rate at slow speeds. The slope‐based estimate of the COT was 5.26 J kg?1 m?1 for all gaits and speeds, while the gait‐specific estimates differed between walking (0.5 m s?1: 6.69 J kg?1 m?1) and cantering/galloping (2.0 m s?1: 5.61 J kg?1 m?1). During laboratory‐based overground locomotion, ring‐tailed lemurs preferred to walk at ~0.5 m s?1 and canter/gallop at ~2.0 m s?1, with the preferred walking speed corresponding well to the COT minima. Compared with birds and other mammals, ring‐tailed lemurs are relatively economical in walking, cantering, and galloping. These results support the view that energetic optima are an important movement criterion for locomotion in ring‐tailed lemurs, and other terrestrial animals. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation–Relaxation and Cross-bridge cycling. A mathematical model incorporating these costs explains observed patterns of locomotor cost both within and between species, across a broad range of animals (insects to ungulates), for a wide range of substrate slopes including level running and vertical climbing. This ARC model unifies work- and force-based models for locomotor cost and integrates whole-organism locomotor cost with cellular muscle physiology, creating a predictive framework for investigating evolutionary and ecological pressures shaping limb design and ranging behaviour.  相似文献   

12.
As noted by previous researchers, the chimpanzee postcranial anatomy reflects a compromise between the competing demands of arboreal and terrestrial locomotion. In this study, we measured the distance climbed and walked per day in a population of wild chimpanzees and used published equations to calculate the relative daily energy costs. Results were used to test hypotheses regarding the arboreal-terrestrial tradeoff in chimpanzee anatomy, specifically whether arboreal adaptations serve to minimize daily locomotor energy costs by decreasing the energy spent climbing. Our results show that chimpanzees spend approximately ten-times more energy per day on terrestrial travel than on vertical climbing, a figure inconsistent with minimizing energy costs in our model. This suggests non-energetic factors, such as avoiding falls from the canopy, may be the primary forces maintaining energetically costly climbing adaptations. These analyses are relevant to anatomical comparisons with living and extinct hominoids.  相似文献   

13.
Within the forest canopy, the shortest gaps between tree crowns lie between slender terminal branches. While the compliance of these supports has previously been shown to increase the energetic cost of gap crossing in arboreal animals (e.g. Alexander 1991 Z. Morphol. Anthropol. 78, 315-320; Demes et al. 1995 Am. J. Phys. Anthropol. 96, 419-429), field observations suggest that some primates may be able to use support compliance to increase the energetic efficiency of locomotion. Here, we calculate the energetic cost of alternative methods of gap crossing in orangutans (Pongo abelii). Tree sway (in which orangutans oscillate a compliant tree trunk with increasing magnitude to bridge a gap) was found to be less than half as costly as jumping, and an order of magnitude less costly than descending the tree, walking to the vine and climbing it. Observations of wild orangutans suggest that they actually use support compliance in many aspects of their locomotor behaviour. This study seems to be the first to show that elastic compliance in arboreal supports can be used to reduce the energetic cost of gap crossing.  相似文献   

14.
The forelimb joints of terrestrial primate quadrupeds appear better able to resist mediolateral (ML) shear forces than those of arboreal quadrupedal monkeys. These differences in forelimb morphology have been used extensively to infer locomotor behavior in extinct primate quadrupeds. However, the nature of ML substrate reaction forces (SRF) during arboreal and terrestrial quadrupedalism in primates is not known. This study documents ML-SRF magnitude and orientation and forelimb joint angles in six quadrupedal anthropoid species walking across a force platform attached to terrestrial (wooden runway) and arboreal supports (raised horizontal poles). On the ground all subjects applied a lateral force in more than 50% of the steps collected. On horizontal poles, in contrast, all subjects applied a medially directed force to the substrate in more than 75% of the steps collected. In addition, all subjects on arboreal supports combined a lower magnitude peak ML-SRF with a change in the timing of the ML-SRF peak force. As a result, during quadrupedalism on the poles the overall SRF resultant was relatively lower than it was on the runway. Most subjects in this study adduct their humerus while on the poles. The kinetic and kinematic variables combine to minimize the tendency to collapse or translate forelimbs joints in an ML plane in primarily arboreal quadrupedal primates compared to primarily terrestrial quadrupedal ones. These data allow for a more complete understanding of the anatomy of the forelimb in terrestrial vs. arboreal quadrupedal primates. A better understanding of the mechanical basis of morphological differences allows greater confidence in inferences concerning the locomotion of extinct primate quadrupeds.  相似文献   

15.
This paper presents spatiotemporal gait parameters of arboreal locomotion in the colobine Rhinopithecus bieti in its natural habitat. While adult females used exclusively either extended-elbow vertical climbing or pulse climbing, the much larger adult males preferred the less demanding flexed-elbow vertical climbing on thin trees or on trunks with handholds. If sex-specific differences are taken into consideration, the differences between flexed-elbow and extended-elbow vertical climbing in Rhinopithecus parallel those observed in Ateles. During flexed-elbow vertical climbing, the gait parameters of R. bieti are very similar to those of spider monkeys (Ateles fusciceps) or bonobos (Pan paniscus). Maximum limb joint excursions also lie in the range of hominoids and atelines and are clearly larger than in Macaca fuscata. It seems likely that climbing kinematics may differ more between Rhinopithecus and macaques than between Rhinopithecus and hominoids or atelines.  相似文献   

16.
Vertical stratification of the arboreal habitat allows the coexistence of several species in a given area, because the complex arboreal strata can be used in different ways by arboreal and scansorial mammals. The present report experimentally investigated the gait metrics on different arboreal substrates, of three sympatric rodents living in a deciduous forest in Poznań, Poland. Arboreal locomotion was compared between the burrowing striped field mouse, Apodemus agrarius, the scansorial bank vole, Myodes glareolus, and the more arboreal yellow-necked mouse, Apodemus flavicollis. We filmed two wild-caught individuals from each species walking on four different substrate diameters (2 mm, 5 mm, 10 mm, 25 mm) and three different inclinations (45° descending, horizontal, 45° ascending) at 240 fps and collected a set of gait parameters from a total of 273 complete cycles. Our results did not demonstrate clear relationships between arboreal locomotion and the ecology of the three species. Only A. flavicollis exhibited locomotor features partly associated with arboreal competence, including lower velocity and diagonality on narrow substrates and asymmetrical gaits on wider ones. On the other hand, the two Apodemus species, despite their different ecologies, shared a few locomotor similarities, such as velocity regulation primarily by stride frequency, and similar effects of substrate size and inclination on diagonality, duty factor, and duty factor index indicating the possibility of a phylogenetic signal. Because the selected gait parameters provided limited insight into the ability of small mammals to move competently through an arboreal habitat, these findings indicate that the relationship between behaviour and ecology is complex.  相似文献   

17.
Primates display high forelimb compliance (increased elbow joint yield) compared to most other mammals. Forelimb compliance, which is especially marked among arboreal primates, moderates vertical oscillations of the body and peak vertical forces and may represent a basal adaptation of primates for locomotion on thin, flexible branches. However, Larney and Larson (Am J Phys Anthropol 125 [2004] 42–50) reported that marsupials have forelimb compliance comparable to or greater than that of most primates, but did not distinguish between arboreal and terrestrial marsupials. If forelimb compliance is functionally linked to locomotion on thin branches, then elbow yield should be highest in marsupials relying on arboreal substrates more often. To test this hypothesis, we compared forelimb compliance between two didelphid marsupials, Caluromys philander (an arboreal opossum relying heavily on thin branches) and Monodelphis domestica (an opossum that spends most of its time on the ground). Animals were videorecorded while walking on a runway or a horizontal 7‐mm pole. Caluromys showed higher elbow yield (greater changes in degrees of elbow flexion) on both substrates, similar to that reported for arboreal primates. Monodelphis was characterized by lower elbow yield that was intermediate between the values reported by Larney and Larson (Am J Phys Anthropol 125 [2004] 42–50) for more terrestrial primates and rodents. This finding adds evidence to a model suggesting a functional link between arboreality—particularly locomotion on thin, flexible branches—and forelimb compliance. These data add another convergent trait between arboreal primates, Caluromys, and other arboreal marsupials and support the argument that all primates evolved from a common ancestor that was a fine‐branch arborealist. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

19.
20.
The presence of a bipedal gait in fossil apes is now recognized as the earliest paleontological evidence of the beginnings of the human lineage. Thus, the search for the selective pressure that led to the adoption of bipedal posture and gait is the search for the origins of the human adaptation. One of the most popular candidates for the origin of erect posture is its purported energetic advantage.1–4 This argument is reevaluated in light of data on the energetic cost of locomotion in mammals and, particularly, data on the effect of bipedalism on cost. I go on to discuss what morphological traces we might expect to see of changes in the locomotor economy of our ancestors once bipedalism became established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号