首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the type of base methylated (cytosine or adenine) and in the extent of methylation were detected by high-pressure liquid chromatography in the DNAs of five spiroplasmas. Nearest neighbor analysis and digestion by restriction enzyme isoschizomers also revealed differences in methylation sequence specificity. Whereas in Spiroplasma floricola and Spiroplasma sp. strain PPS-1 5-methylcytosine was found on the 5' side of each of the four major bases, the cytosine in Spiroplasma apis DNA was methylated only when its 3' neighboring base was adenine or thymine. In Spiroplasma sp. strain MQ-1 over 95% of the methylated cytosine was in C-G sequences. Essentially all of the C-G sequences in the MQ-1 DNA were methylated. Partially purified extracts of S. apis and Spiroplasma sp. strain MQ-1 were used to study substrate and sequence specificity of the methylase activity. Methylation by the MQ-1 enzyme was exclusively at C-G sequences, resembling in this respect eucaryotic DNA methylases. However, the MQ-1 methylase differed from eucaryotic methylases by showing high activity on nonmethylated DNA duplexes, low activity with hemimethylated DNA duplexes, and no activity on single-stranded DNA.  相似文献   

2.
Amino acid sequences for 11 acetohydroxy acid synthase (EC 4.1.3.18; AHS) polypeptides with experimentally established activity were chosen for computational comparisons to detect conserved local information associated with reaction specificity for each sequence. Windowed analysis by Pearson product moment cross-correlation of six amino acid sidechain properties revealed locally conserved segments common to all proteins with AHS activity. Seven information segments were detected in the same arrangement in sequences for the large subunit polypeptides of prokaryotes, and in the sequences for single polypeptides of eukaryotic AHS. The information segments were numbered 1-7 according to sequential position, and sequence features such as cofactor binding sites were defined for specific segments. Extension of the information segment analysis to seven other proteins of the pyruvate decarboxylase superfamily permitted use of the content and organization of information segments to recognize four classes of enzyme reaction specificity. Estimates of information entropy, based upon a state space defined by reaction specificity, directly reflected the known reaction complexity for all but one enzyme examined. Our data suggest that development of information-segment models for enzyme superfamilies may improve the accuracy of inferring protein activity from sequence.  相似文献   

3.
M D Been  T R Cech 《Cell》1986,47(2):207-216
The specificity of reactions catalyzed by the Tetrahymena pre-rRNA intervening sequence (IVS) was studied using site-specific mutagenesis. Two sequences required for 5' splice-site selection during self-splicing were defined. Single-base changes in either a 5' exon sequence or a 5' exon-binding site within the IVS disrupt their ability to pair and result in inefficient or inaccurate splicing. Combinations that restore complementarity suppress the effect of the single-base changes. Sequence alterations in the 5' exon-binding site also change the specificity of two other reactions: intermolecular exon ligation (trans-splicing) and the enzymatic nucleotidyltransferase activity of the IVS RNA. Thus the substrate specificity of an RNA enzyme can be changed in a manner predictable by the rules of Watson-Crick base-pairing.  相似文献   

4.
Isoamylases are debranching enzymes that hydrolyze alpha-1,6 linkages in alpha-1,4/alpha-1,6-linked glucan polymers. In plants, they have been shown to be required for the normal synthesis of amylopectin, although the precise manner in which they influence starch synthesis is still debated. cDNA clones encoding three distinct isoamylase isoforms (Stisa1, Stisa2, and Stisa3) have been identified from potato. The expression patterns of the genes are consistent with the possibility that they all play roles in starch synthesis. Analysis of the predicted sequences of the proteins suggested that only Stisa1 and Stisa3 are likely to have hydrolytic activity and that there probably are differences in substrate specificity between these two isoforms. This was confirmed by the expression of each isoamylase in Escherichia coli and characterization of its activity. Partial purification of isoamylase activity from potato tubers showed that Stisa1 and Stisa2 are associated as a multimeric enzyme but that Stisa3 is not associated with this enzyme complex. Our data suggest that Stisa1 and Stisa2 act together to debranch soluble glucan during starch synthesis. The catalytic specificity of Stisa3 is distinct from that of the multimeric enzyme, indicating that it may play a different role in starch metabolism.  相似文献   

5.
A second site specific endonuclease with a novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111II. The enzyme is active at temperature up to 80 degrees C and requires Mg2+ or Mn2+ for activity. Tth111II cleaves phi X174RFDNA into 11 fragments. From the analysis of 5' terminal sequences of the phi X174RFDNA fragments produced by Tth111II action, it was concluded that Tth111II recognized the DNA sequence (See formula in text) and cleaved the sites as indicated by arrows.  相似文献   

6.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

7.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with alpha-, beta-, or kappa-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

8.
Divergence of substrate specificity within the context of a common structural framework represents an important mechanism by which new enzyme activity naturally evolves. We present enzymological and x-ray structural data for hamster chymase-2 (HAM2) that provides a detailed explanation for the unusual hydrolytic specificity of this rodent alpha-chymase. In enzymatic characterization, hamster chymase-1 (HAM1) showed typical chymase proteolytic activity. In contrast, HAM2 exhibited atypical substrate specificity, cleaving on the carboxyl side of the P1 substrate residues Ala and Val, characteristic of elastolytic rather than chymotryptic specificity. The 2.5-A resolution crystal structure of HAM2 complexed to the peptidyl inhibitor MeOSuc-Ala-Ala-Pro-Ala-chloromethylketone revealed a narrow and shallow S1 substrate binding pocket that accommodated only a small hydrophobic residue (e.g. Ala or Val). The different substrate specificities of HAM2 and HAM1 are explained by changes in four S1 substrate site residues (positions 189, 190, 216, and 226). Of these, Asn(189), Val(190), and Val(216) form an easily identifiable triplet in all known rodent alpha-chymases that can be used to predict elastolytic specificity for novel chymase-like sequences. Phylogenetic comparison defines guinea pig and rabbit chymases as the closest orthologs to rodent alpha-chymases.  相似文献   

9.
Human glucose 6-phosphate dehydrogenase contains about 18 sulfhydryl groups per active dimer (MW = 110,000, and it does not contain S–S bridges. Chloromercuribenzoate stoichinmetrically and reversibly inactivates the enzyme. Oxidation of the enzyme by hydrogen peroxide induces a reduction of enzyme activity, an alteration of the substrate specificity, and an increased anodal electrophoretic mobility. The oxidized enzyme can use 2-deoxyglucose 6-phosphate, deamino NADP, and NAD far more effectively than the native enzyme. Oxidation of the enzyme by air at pH 8.0 does not induce a significant loss of enzyme activity or an alteration of the substrate specificity, although about 70% of the sulfhydryl groups of the enzyme are oxidized by the treatment.  相似文献   

10.
Delta 6 desaturase (FADS2) is a critical bifunctional enzyme required for PUFA biosynthesis. In some organisms, FADS2s have high substrate specificity, whereas in others, they have high catalytic activity. Previously, we analyzed the molecular mechanisms underlying high FADS2 substrate specificity; in this study, we assessed those underlying the high catalytic activity of FADS2s from Glossomastix chrysoplasta and Thalassiosira pseudonana. To understand the structural basis of this catalytic activity, GcFADS2 and TpFADS2 sequences were divided into nine sections, and a domain-swapping approach was applied to examine the role of each section in facilitating the catalytic activity of the overall protein. The results revealed two regions essential to this process: one that extends from the end of the fourth to the beginning of the fifth cytoplasmic transmembrane domain, and another that includes the C-terminal region that occurs after the sixth cytoplasmic transmembrane domain. Based on the domain-swapping analyses, the amino acid residues at ten sites were identified to differ between the GcFADS2 and TpFADS2 sequences, and therefore further analyzed by site-directed mutagenesis. T302V, S322A, Y375F, and M384S/M385 substitutions in TpFADS2 significantly affected FADS2 catalytic efficiency. This study offers a solid basis for in-depth understanding of catalytic efficiency of FADS2.  相似文献   

11.
N-氨甲酰基水解酶是一种非常具有工业应用价值的水解酶,可用于制备光学纯氨基酸。通过LA PCR从Sinorhizobium morelensS-5菌中克隆到1.3kb的DNA片段,测序表明该片段上含有一个完整的N-氨甲酰基水解酶的基因(hyuC)序列。将hyuC基因克隆到表达载体pET30a上,重组质粒pET30a-HyuC在大肠杆菌中获得了高水平表达。重组的N-氨甲酰基水解酶经过热处理和三步柱色谱分离而纯化。纯化倍数为16.1倍,收率21.2%。该酶为同源四聚体,亚基分子量是38kDa。最适温度是60℃,最适pH为7.0。该酶有较高的热稳定性和氧化稳定性。Fe2 和Ca2 对酶的活性有一定的促进作用,而金属螯合剂和巯基试剂对酶活无明显影响。  相似文献   

12.
In order to identify novel genes encoding enzymes involved in the terminal step of triacylglycerol (TAG) formation, a database search was carried out in the genome of the unicellular photoautotrophic green alga Ostreococcus tauri. The search led to the identification of three putative type 2 acyl-CoA:diacylglycerol acyltransferase-like sequences (DGAT; EC 2.3.1.20), and revealed the absence of any homolog to type 1 or type 3 DGAT sequence in the genome of O. tauri. For two of the cDNA sequences (OtDGAT2A and B) enzyme activity was detected by heterologous expression in Saccharomyces cerevisiae mutant strains with impaired TAG metabolism. However, activity of OtDGAT2A was too low for further analysis. Analysis of their amino acid sequences showed that they share limited identity with other DGAT2 from different plant species, such as Ricinus communis and Vernicia fordii with ~25 to 30% identity. Lipid analysis of the mutant yeast cells revealed that OtDGAT2B showed broad substrate specificity accepting saturated as well as mono- and poly-unsaturated acyl-CoAs as substrates.  相似文献   

13.
A genomic region involved in tetralin biodegradation was recently identified in Sphingomonas strain TFA. We have cloned and sequenced from this region a gene designated thnC, which codes for an extradiol dioxygenase required for tetralin utilization. Comparison to similar sequences allowed us to define a subfamily of 1, 2-dihydroxynaphthalene extradiol dioxygenases, which comprises two clearly different groups, and to show that ThnC clusters within group 2 of this subfamily. 1,2-Dihydroxy-5,6,7, 8-tetrahydronaphthalene was found to be the metabolite accumulated by a thnC insertion mutant. The ring cleavage product of this metabolite exhibited behavior typical of a hydroxymuconic semialdehyde toward pH-dependent changes and derivatization with ammonium to give a quinoline derivative. The gene product has been purified, and its biochemical properties have been studied. The enzyme is a decamer which requires Fe(II) for activity and shows high activity toward its substrate (V(max), 40.5 U mg(-1); K(m), 18. 6 microM). The enzyme shows even higher activity with 1, 2-dihydroxynaphthalene and also significant activity toward 1, 2-dihydroxybiphenyl or methylated catechols. The broad substrate specificity of ThnC is consistent with that exhibited by other extradiol dioxygenases of the same group within the subfamily of 1, 2-dihydroxynaphthalene dioxygenases.  相似文献   

14.
Despite the importance of topoisomerase II-mediated DNA ligation to the essential physiological functions of the enzyme, the mechanistic details of this important reaction are poorly understood. Because topoisomerase II normally does not release cleaved DNA molecules prior to ligation, it is not known whether all of the nucleic acid specificity of its cleavage/ligation cycle is embodied in DNA cleavage or whether ligation also contributes specificity to the enzyme. All currently available ligation assays require that topoisomerase II cleave the initial DNA substrate before rejoining can be monitored. Consequently, it has been impossible to examine the specificity of DNA ligation separately from that of scission. To address this issue, a cleavage-independent topoisomerase II DNA ligation assay was developed. This assay utilizes a nicked oligonucleotide whose 5'-phosphate terminus at the nick has been activated by covalent attachment to the tyrosine mimic, p-nitrophenol. Human topoisomerase IIalpha and enzymes with active-site mutations that abrogated cleavage activity ligated the activated nick by catalyzing the direct attack of the terminal 3'-OH on the activated 5'-phosphate. Results with different DNA sequences indicate that human topoisomerase IIalpha possesses an intrinsic nucleic acid specificity for ligation that parallels its specificity for DNA cleavage.  相似文献   

15.
Mutants of transketolase (TK) with improved substrate specificity towards the non-natural aliphatic aldehyde substrate propionaldehyde have been obtained by directed evolution. We used the same active-site targeted saturation mutagenesis libraries from which we previously identified mutants with improved activity towards glycolaldehyde, which is C2-hydroxylated like all natural TK substrates. Comparison of the new mutants to those obtained previously reveals distinctly different subsets of enzyme active-site mutations with either improved overall enzyme activity, or improved specificity towards either the C2-hydroxylated or non-natural aliphatic aldehyde substrate. While mutation of phylogenetically variant residues was found previously to yield improved enzyme activity on glycolaldehyde, we show here that these mutants in fact gave improved activity on both substrate types. In comparison, the new mutants were obtained at conserved residues which interact with the C2-hydroxyl group of natural substrates, and gave up to 5-fold improvement in specific activity and 64-fold improvement in specificity towards propionaldehyde relative to glycolaldehyde. This suggests that saturation mutagenesis can be more selectively guided for evolution towards either natural or non-natural substrates, using both structural and sequence information.  相似文献   

16.
D Barker  M Hoff  A Oliphant    R White 《Nucleic acids research》1984,12(14):5567-5581
A type II restriction endonuclease activity free of TaqI was prepared from Thermus Aquaticus YT. The fraction contains two endonucleolytic components with apparently different specificities, however the major activity is sufficiently dominant to allow partial digestion analysis of the position of recognition sites. A precise determination of the location of cleavage sites in pBR322 DNA and a computer-aided search for regions of homology in the vicinity of the cut sites indicate that this enzyme recognizes the nonpalindromic sequences GACCGA or CACCCA. Other related sequences are not cleaved, in particular, GACCCA and CACCGA, indicating that the enzyme requires the identity of nucleotides in the first and fifth positions, a type of specificity that has not been previously reported. The position of cleavage is located outside of the site and is represented as: (Formula: see text).  相似文献   

17.
Correlated mutation analyses (CMA) on multiple sequence alignments are widely used for the prediction of the function of amino acids. The accuracy of CMA‐based predictions is mainly determined by the number of sequences, by their evolutionary distances, and by the quality of the alignments. These criteria are best met in structure‐based sequence alignments of large super‐families. So far, CMA‐techniques have mainly been employed to study the receptor interactions. The present work shows how a novel CMA tool, called Comulator, can be used to determine networks of functionally related residues in enzymes. These analyses provide leads for protein engineering studies that are directed towards modification of enzyme specificity or activity. As proof of concept, Comulator has been applied to four enzyme super‐families: the isocitrate lyase/phoshoenol‐pyruvate mutase super‐family, the hexokinase super‐family, the RmlC‐like cupin super‐family, and the FAD‐linked oxidases super‐family. In each of those cases networks of functionally related residue positions were discovered that upon mutation influenced enzyme specificity and/or activity as predicted. We conclude that CMA is a powerful tool for redesigning enzyme activity and selectivity. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The protease that degrades the beta subunit of the soybean (Glycine max (L.) Merrill) storage protein beta-conglycinin was purified from the cotyledons of seedlings grown for 12 days. The enzyme was named protease C2 because it is the second enzyme to cleave the beta-conglycinin storage protein, the first (protease C1) being one that degrades only the alpha' and alpha subunits of the storage protein to products similar in size and sequence to the remaining intact beta subunit. Protease C2 activity is not evident in vivo until 4 days after imbibition of the seed. The 31 kDa enzyme is a cysteine protease with a pH optimum with beta-conglycinin as substrate of 5.5. The action of protease C2 on native beta-conglycinin produces a set of large fragments (52-46 kDa in size) and small fragments (29-25 kDa). This is consistent with cleavage of all beta-conglycinin subunits at the region linking their N- and C-domains. Protease C2 also cleaves phaseolin, the Phaseolus vulgaris vicilin homologous to beta-conglycinin, to fragments in the 25-28 kDa range. N-Terminal sequences of isolated beta-conglycinin and phaseolin products show that protease C2 cleaves at a bond within a very mobile surface loop connecting the two compact structural domains of each subunit. The protease C2 cleavage specificity appears to be dictated by the substrate's three-dimensional structure rather than a specificity for a particular amino acid or sequence.  相似文献   

19.
We previously reported a double-stranded endonuclease from HeLa cells, endonuclease R (endo R), which specifically cleaves duplex DNA at sites rich in G.C base pairs. In this report we describe the purification of endo R to near homogeneity by conventional and affinity chromatography. The molecular mass of the active form of endo R is approximately 115-125 kDa. SDS-gel electrophoresis reveals a major protein species of 100 kDa. The enzyme requires Mg2+ as a cofactor and is equally active on closed circular and linear duplex DNA substrates that contain G-rich sequences. A 50% reduction in cleavage activity is observed with Ca2+ ions and no double-stranded cleavage occurs with Zn2+. Use of Mn2+ causes an altered specificity at low concentrations of enzyme or divalent metal ion and nonspecific degradation of the substrate at higher concentrations. Endo R is strongly inhibited by sodium or potassium chloride and exhibits a wide pH optimum of 6.0-9.0. The pI of the enzyme is between 6.5 and 7.0. A 2-fold stimulation is observed with the addition of dGTP or dATP but specific cleavage is inhibited by ATP at an equivalent concentration. Cleavage activity is competitively inhibited 10-fold more efficiently by single-stranded poly(dG)12 than by other DNA competitors. The ends of endo R cleavage products contain 5'-phosphate and 3'-hydroxyl groups, and a significant portion of these products were substrates for T4 DNA ligase. Endo R appears to be a previously uncharacterized mammalian endonuclease.  相似文献   

20.
We have previously shown that DNA demethylation by chick embryo 5-methylcytosine (5-MeC)-DNA glycosylase needs both protein and RNA. RNA from enzyme purified by SDS-PAGE was isolated and cloned. The clones have an insert ranging from 240 to 670 bp and contained on average one CpG per 14 bases. All six clones tested had different sequences and did not have any sequence homology with any other known RNA. RNase-inactivated 5-MeC-DNA glycosylase regained enzyme activity when incubated with recombinant RNA. However, when recombinant RNA was incubated with the DNA substrate alone there was no demethylation activity. Short sequences complementary to the labeled DNA substrate are present in the recombinant RNA. Small synthetic oligoribonucleotides (11 bases long) complementary to the region of methylated CpGs of the hemimethylated double-stranded DNA substrate restore the activity of the RNase-inactivated 5-MeC-DNA glycosylase. The corresponding oligodeoxyribonucleotide or the oligoribonucleotide complementary to the non-methylated strand of the same DNA substrate are inactive when incubated in the complementation test. A minimum of 4 bases complementary to the CpG target sequence are necessary for reactivation of RNase-treated 5-MeC-DNA glycosylase. Complementation with double-stranded oligoribonucleotides does not restore 5-MeC-DNA glycosylase activity. An excess of targeting oligoribonucleotides cannot change the preferential substrate specificity of the enzyme for hemimethylated double-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号