首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several outbreaks of waterborne giardiasis have occurred in southern Canada, but nothing has been reported from the Canadian North. The objective of this study was to collect information relevant to waterborne giardiasis and cryptosporidiosis in the Yukon including epidemiological data and analyses of water, sewage, and animal fecal samples. Remote, pristine water samples were found to be contaminated with Giardia cysts (7 of 22 or 32%) but not with Cryptosporidium oocysts. Giardia cysts were found in 21% (13 of 61) of animal scats, but no Cryptosporidium oocysts were observed (small sample size). Whitehorse's drinking water was episodically contaminated with Giardia cysts (7 of 42 or 17%) and Cryptosporidium oocysts (2 of 42 or 5%). Neither were found in Dawson City's water supply. The only water treatment in the Yukon is chlorination, but contact times and free chlorine residuals are often too low to provide adequate protection by disinfection. Raw sewage samples from the five largest population centers in the Yukon contained 26 to 3,022 Giardia cysts and 0 to 74 Cryptosporidium oocysts per liter. Treated sewage from Whitehorse contained fewer Giardia cysts but more Cryptosporidium oocysts on average. Both were detected in Lake Laberge, downstream of Whitehorse, which has a history of fecal coliform contamination. Daily monitoring of raw sewage from the suburbs of Whitehorse showed a summertime peak of Giardia cysts and occasional Cryptosporidium oocysts after springtime contamination of drinking water. Despite this evidence, epidemiological data for the Yukon showed an endemic infection rate of only 0.1% for giardiasis (cryptosporidiosis is not notifiable).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study was carried out to estimate the prevalence and potential for human infectivity of Giardia cysts in Canadian drinking water supplies. The presence of Cryptosporidium oocysts was also noted, but isolates were not collected for further study. A total of 1,760 raw water samples, treated water samples, and raw sewage samples were collected from 72 municipalities across Canada for analysis, 58 of which treat their water by chlorination alone. Giardia cysts were found in 73% of raw sewage samples, 21% of raw water samples, and 18.2% of treated water samples. There was a trend to higher concentration and more frequent incidence of Giardia cysts in the spring and fall, but positive samples were found in all seasons. Cryptosporidium oocysts were found in 6.1% of raw sewage samples, 4.5% of raw water samples, and 3.5% of treated water samples. Giardia cyst viability was assessed by infecting Mongolian gerbils (Meriones unguiculatus) and by use of a modified propidium iodide dye exclusion test, and the results were not always in agreement. No Cryptosporidium isolates were recovered from gerbils, but 8 of 276 (3%) water samples and 19 of 113 (17%) sewage samples resulted in positive Giardia infections. Most of the water samples contained a low number of cysts, and 12 Giardia isolates were successfully recovered from gerbils and cultured. Biotyping of these isolates by isoenzyme analysis and karyotyping by pulsed-field gel electrophoresis separated the isolates into the same three discrete groups. Karyotyping revealed four or five chromosomal bands ranging in size from 0.9 to 2 Mb, and four of the isolates had the same banding pattern as that of the WB strain. Analysis of the nucleotide sequences of the 16S DNA coding for rRNA divided the isolates into two distinct groups corresponding to the Polish and Belgian designations found by other investigators. The occurrence of these biotypes and karyotypes appeared to be random and was not related to geographic or other factors (e.g., different types were found in both drinking water and sewage from the same community). Biotyping and karyotyping showed that isolates from this study were genetically and biochemically similar to those found elsewhere, including well-described human source strains such as WB. We conclude that potentially human-infective Giardia cysts are commonly found in raw surface waters and sewage in Canada, although cyst viability is frequently low. Cryptosporidium oocysts are less common in Canada. An action level of three to five Giardia cysts per 100 liters in treated drinking water is proposed on the basis of the monitoring data from outbreak situations. This action level is lower than that proposed by Haas and Rose (C. N. Haas and J. B. Rose, J. Am. Water Works Assoc. 87(9):81-84, 1995) for Cryptosporidium spp. (10 to 30 oocysts per 100 liters).  相似文献   

3.
Methods for the simultaneous detection of Cryptosporidium parvum oocysts and Giardia cysts from water are described and their relative recovery efficiencies are assessed for seeded samples of both tap and river water. Cartridge filtration, membrane filtration, and calcium carbonate flocculation were evaluated, and steps to optimize the concentration procedures were undertaken. Increasing centrifugation to 5,000 x g, coupled with staining in suspension, was found to increase the overall efficiency of recovery of both cysts and oocysts. Cartridge filtration for both cysts and oocysts was examined by use of 100-liter volumes of both tap and river water. Improvements in recovery were observed for Cryptosporidium oocysts after extra washes of the filters. Calcium carbonate flocculation gave the maximum recovery for both Cryptosporidium oocysts and Giardia cysts and for both water types. A variety of 142-mm membranes was examined by use of 10-liter seeded samples of tap and river water. Cellulose acetate with a 1.2-micron pore size provided the best results for Cryptosporidium oocysts, and cellulose nitrate with a 3.0-micron pore size did so for Giardia cysts.  相似文献   

4.
Genotyping studies on the source and human infection potential of Cryptosporidium oocysts in water have been almost exclusively conducted in industrialized nations. In this study, 50 source water samples and 30 tap water samples were collected in Shanghai, China, and analyzed by the U.S. Environmental Protection Agency (EPA) Method 1623. To find a cost-effective method to replace the filtration procedure, the water samples were also concentrated by calcium carbonate flocculation (CCF). Of the 50 source water samples, 32% were positive for Cryptosporidium and 18% for Giardia by Method 1623, whereas 22% were positive for Cryptosporidium and 10% for Giardia by microscopy of CCF concentrates. When CCF was combined with PCR for detection, the occurrence of Cryptosporidium (28%) was similar to that obtained by Method 1623. Genotyping of Cryptosporidium in 17 water samples identified the presence of C. andersoni in 14 water samples, C. suis in 7 water samples, C. baileyi in 2 water samples, C. meleagridis in 1 water sample, and C. hominis in 1 water sample. Therefore, farm animals, especially cattle and pigs, were the major sources of water contamination in Shanghai source water, and most oocysts found in source water in the area were not infectious to humans. Cryptosporidium oocysts were found in 2 of 30 tap water samples. The combined use of CCF for concentration and PCR for detection and genotyping provides a less expensive alternative to filtration and fluorescence microscopy for accurate assessment of Cryptosporidium contamination in water, although the results from this method are semiquantitative.  相似文献   

5.
AIMS: An internal positive control for Cryptosporidium and Giardia monitoring was evaluated for use in routine water monitoring quality control. The control, known as ColorSeed C&G (BTF Pty Ltd, Sydney, Australia), is a suspension containing exactly 100 Cryptosporidium oocysts and 100 Giardia cysts that have been modified by attachment of Texas Red to the cell wall, allowing them to be differentiated from unmodified oocysts and cysts. The control enables recovery efficiencies to be determined for every water sample analysed. METHODS AND RESULTS: A total of 494 water samples were seeded with ColorSeed C&G and with unlabelled Cryptosporidium and Giardia and then analysed. Additionally, the robustness of the ColorSeed labelling was challenged with various chemical treatments. Recoveries were significantly lower for the ColorSeed Texas Red labelled Cryptosporidium and Giardia than recoveries of unlabelled Cryptosporidium and Giardia. However, the differences in recoveries were small. On average ColorSeed Cryptosporidium recoveries were 3.3% lower than unlabelled Cryptosporidium, and ColorSeed Giardia recoveries were 4% lower than unlabelled Giardia. CONCLUSIONS: ColorSeed C&G is suitable for use as an internal positive control for routine monitoring of both treated and raw water samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The small differences in recoveries are unlikely to limit the usefulness of ColorSeed C&G as an internal positive control. The ColorSeed labelling was found to be robust after different treatments.  相似文献   

6.
Giardia and Cryptosporidium spp. are important enteric protozoan pathogens for humans and animals, and have been found to contaminate water as well as edible shellfish all over the world. This is the first study to simultaneously investigate the presence of Giardia and Cryptosporidium in inflowing water and harvested shellfish in a geographically closed environment (Varano Lagoon, Southern Italy). Samples of treated wastewater were collected each month - at the outlet from the treatment plant, and downstream at the inlet into the lagoon - from the channels flowing into the Lagoon, together with specimens of Ruditapes decussatus and Mytilus galloprovincialis from shellfish-farms on the same lagoon. Giardia cysts were found by immunofluorescence (IF) microscopy in 16 out of 21 samples of treated wastewater and in 7 out of 21 samples from downstream water channels, and viable cysts were also detected by a beta-giardin RT-PCR. G. duodenalis Assemblages A and B were identified by small ribosomal subunit (18S-rDNA) and triosephosphate isomerase (tpi)-PCR, followed by sequencing. Cryptosporidium oocysts were found by IF in 5 out of 21 wastewater samples, and in 8 out of 21 samples from water channels. Molecular analysis identified the zoonotic species Cryptosporidium parvum by oocyst wall protein (COWP)-PCR and sequencing. Higher concentrations of Giardia cysts than Cryptosporidium oocysts were registered in almost all wastewater and water samples. IF and molecular testing of shellfish gave negative results for both protozoa. Wastewaters carrying Giardia and Cryptosporidium (oo)cysts are discharged into the Lagoon; however, the shellfish harvested in the same environment were found to be unaffected, thus suggesting that physical, ecological and climatic conditions may prevent contamination of harvested shellfish.  相似文献   

7.
Giardia and Cryptosporidium spp. in filtered drinking water supplies.   总被引:10,自引:7,他引:3       下载免费PDF全文
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

8.
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

9.
AIMS: To determine the occurrence and levels of Cryptosporidium parvum oocysts in wastewater and surface waters in north-eastern Spain. METHODS AND RESULTS: Samples from five sewage treatment plants were taken monthly and quarterly during 2003. In addition, water was collected monthly from the River Llobregat (NE Spain) during the period from 2001 to 2003. All samples were analysed by filtration on cellulose acetate filters or through Envirocheck using EPA method 1623, followed by immunomagnetic separation and examination by laser scanning cytometry. All raw sewage, secondary effluent and river water samples tested were positive for Cryptosporidium oocysts. Of the tertiary sewage effluents tested, 71% were positive for Cryptosporidium oocysts. The proportion of viable oocysts varied according to the sample. CONCLUSIONS: Two clear maxima were observed during spring and autumn in raw sewage, showing a seasonal distribution and a correlation with the number of cryptosporidiosis cases and rainfall events. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides the first data on the occurrence of Cryptosporidium oocysts in natural waters in north-eastern Spain.  相似文献   

10.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% +/- 11.8%, while the mean cyst recovery was 57.1% +/- 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% +/- 16.3% for oocysts and 49.4% +/- 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% +/- 13.8%, while the mean cyst recovery percentages was 41.2% +/- 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% +/- 11.1% and 61.3% +/- 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

11.
Occurrence of Giardia and Cryptosporidium spp. in surface water supplies.   总被引:11,自引:0,他引:11  
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.  相似文献   

12.
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.  相似文献   

13.
The environmental distribution of Giardia spp. and Cryptosporidium spp. is dependent upon human, agricultural, and wildlife sources. The significance of each source with regard to the presence of parasites in the environment is unknown. This 2-year study examined parasite prevalence in human sewage influent, wildlife, and agricultural sources associated with the North Saskatchewan River Basin in Alberta, Canada. Fecal samples were collected from cow-calf, dairy, and hog operations in the watershed area. Sewage-treatment facilities were sampled bimonthly during the 2-year study, and wildlife scat was collected at locations along tributaries of the North Saskatchewan River. All samples were analyzed for the presence of Giardia and Cryptosporidium, using sucrose-gradient separation followed by immunofluorescent microscopy. Giardia and Cryptosporidium were detected in all three sources. The lowest prevalence of both Giardia (3.28%) and Cryptosporidium (0.94%) was found in wildlife, with 6 of 19 species testing positive. Sewage influent had the highest prevalence of Giardia (48.80%) and Cryptosporidium parvum-like oocysts (5.42%); however, the concentration of both parasites was minimal compared with the concentration detected in cattle feces. Cow-calf sources contained the highest concentration of Giardia (mean 5800/g feces, P < 0.01), and dairy sources contained the highest concentration of C. parvum-like oocysts (mean 295/g feces, P < 0.01). Although prevalence and concentration are higher in cattle feces than in sewage, the Giardia and Cryptosporidium in animal manure do not have direct access to water draining into the North Saskatchewan River. PCR-based characterization of rDNA from isolates of Cryptosporidium collected from Alberta human, pig, calf, mature steer, dog, cat, and beaver hosts revealed distinct genetic differences that may reflect host specificity.  相似文献   

14.
The Gelman Envirochek capsule is a membrane device for the simultaneous concentration of Cryptosporidium oocysts and Giardia cysts from water. Samples are filtered through a Supor® polyethersulphone membrane with a 1 μm absolute pore size. (Oo)cysts are mechanically eluted from the membrane fibre using a wrist action shaker and a non-ionic detergent and concentrated by centrifugation. The concentrate can be further processed using any separation technique to separate the target organisms from other debris. This method enables multiple samples to be processed within 1 h. Recoveries from seeded tap and source water samples were in excess of 70% for Cryptosporidium and 80% for Giardia.  相似文献   

15.
Giardiasis and cryptosporidiosis are diseases caused by the protozoan parasites Giardia lamblia and Cryptosporidium parvum. Waterborne transmission of these organisms has become more prevalent in recent years, and regulatory agencies are urging that source and finished water be screened for these organisms. A major problem associated with testing for these organisms is the lack of reliable methodologies and baseline information on the prevalence of these parasites in various water sources. Our study addressed both of these issues. We evaluated the presence and reduction of Giardia cysts and Cryptosporidium oocysts in sewage effluent by a combination of indirect fluorescent antibody (IFA) staining and PCR. Our results indicated a 3-log reduction of Giardia cysts and a 2-log reduction of Cryptosporidium oocysts through the sewage treatment process as determined by IFA. We developed a nested PCR to detect Cryptosporidium oocysts and used a double PCR to detect Giardia cysts. A 100% correlation was noted between IFA and PCR detection of Giardia cysts while correlation for Cryptosporidium oocysts was slightly less. On the basis of these results, PCR may be a useful tool in the environmental analysis of water samples for Giardia and Cryptosporidium organisms.  相似文献   

16.
A novel filter system comprising open cell reticulated foam rings compressed between retaining plates and fitted into a filtration housing was evaluated for the recovery of oocysts of Cryptosporidium from water. Mean recoveries of 90·2% from seeded small and large volume (100–2000 l) tap water samples, and 88·8% from 10–20 l river water samples, were achieved. Following a simple potassium citrate flotation concentrate clean-up procedure, mean recoveries were 56·7% for the tap water samples and 60·9% for river water samples. This represents a marked improvement in capture and recovery of Cryptosporidium oocysts from water compared with conventional polypropylene wound cartridge filters and membrane filters.  相似文献   

17.
Thirteen intensive pig farms and two activated sludge treatment plants for pig slurry in north-western Spain were studied from April 2005 to June 2006 in order to evaluate the presence of enteric pathogens (Cryptosporidium, Giardia and helminths) and the efficiency with which they were removed. These parasites were present on 53%, 7% and 38% of the farms studied, respectively, with concentrations of 10(4)-10(5) oocysts per litre (/L) for Cryptosporidium, 10(3)cysts/L for Giardia and 10(2)-10(3) eggs/L for helminths. The overall removal of parasites in the pig slurry treatment plants ranged from 86.7% to over 99.99%. The results revealed a constant reduction at each stage of the treatment system, with activated sludge processes being the most effective treatment in reducing pathogens in pig slurry, 78-81% for Cryptosporidium oocysts and over 99.9% for helminth eggs. A heat drying procedure for sludge removed 4.3 log units of Cryptosporidium oocysts, demonstrating the excellent effectiveness of this treatment for reducing pathogens in sludge intended to be applied to land.  相似文献   

18.
We report the detection and identification of Cryptosporidium and Giardia from 1 of 3 species of pinnipeds. Fecal samples were collected from Pacific harbor seal (Phoca vitulina richardsi), northern elephant seal (Mirounga angustirostris), and California sea lion (Zalophus californianus) in the northern California coastal area. By means of fluorescently labeled monoclonal antibodies, Cryptosporidium oocysts were detected in 3 samples from California sea lions, 1 of which also contained Giardia cysts. Oocysts of Cryptosporidium and cysts of Giardia were morphologically indistinguishable from oocysts of C. parvum and cysts of G. duodenalis from other animal origins. Oocysts and cysts were then purified using immunomagnetic separation techniques and identified by polymerase chain reaction (PCR), from which species-specific products were obtained. Sequence analysis revealed that the 452-bp and 358-bp PCR products of Cryptosporidium isolated from California sea lion had identities of 98% with sequences of their template fragments of C. parvum obtained from infected calves. Based on morphological, immunological, and genetic characterization, the isolates were identified as C. parvum and G. duodenalis, respectively. The findings suggested that California sea lions could serve as reservoirs in the environmental transmission of Cryptosporidium and Giardia.  相似文献   

19.
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, approximately 40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study.  相似文献   

20.
The steps of two immunofluorescent-antibody-based detection methods were evaluated for their efficiencies in detecting Giardia cysts and Cryptosporidium oocysts. The two methods evaluated were the American Society for Testing and Materials proposed test method for Giardia cysts and Cryptosporidium oocysts in low-turbidity water and a procedure employing sampling by membrane filtration, Percoll-Percoll step gradient, and immunofluorescent staining. The membrane filter sampling method was characterized by higher recovery rates in all three types of waters tested: raw surface water, partially treated water from a flocculation basin, and filtered water. Cyst and oocyst recovery efficiencies decreased with increasing water turbidity regardless of the method used. Recoveries of seeded Giardia cysts exceeded those of Cryptosporidium oocysts in all types of water sampled. The sampling step in both methods resulted in the highest loss of seeded cysts and oocysts. Furthermore, much higher recovery efficiencies were obtained when the flotation step was avoided. The membrane filter method, using smaller tubes for flotation, was less time-consuming and cheaper. A serious disadvantage of this method was the lack of confirmation of presumptive cysts and oocysts, leaving the potential for false-positive Giardia and Cryptosporidium counts when cross-reacting algae are present in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号