首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

2.
采用银浸染,美蓝及H.E染色技术对5尾鳜成鱼的脑干进行了组织学研究,并在此基础上对春各主要神经核团及神经束空间构型及走向进行了探讨,旨在为研究鳜脑的功能提供生资料。鳜脑干结构与其它硬骨鱼相似,囊括了除第1对脑神经之外的9对脑神经中枢。并且感觉中枢多集中于脑干背侧;运动中枢集中于脑干腹侧。  相似文献   

3.
色彩图案作为最显著的外部形态特征之一,在动物生存与交流中起着重要的作用。为了解鳜(Siniperca chautsi)早期发育过程中这一形态特征变化,采用CCD-Adapter解剖镜对鳜早期(胚胎期至出膜40日龄)体表色素细胞种类与分布、主要图案(条、带、斑)的形成过程进行了观察,同时对不同部位皮肤进行组织切片观察。结果显示,胚胎期,最早观察到黑色素细胞,位于卵黄囊和油球,出膜前,头部出现黄色素细胞;出膜后,黑色素细胞发育最为显著,红色素细胞出现在眼球后部和躯干前部;5日龄后,黄色素细胞发育增加,鱼体各部位均有分布,黑色素细胞继续发育,图案形成开始。鳜早期色彩图案形成过程:(1)躯干纵带:5日龄,背部出现少量黑色素,14日龄,背鳍基部黑色素与腹部黑色素相连;(2)头部过眼条带:10日龄,鳃盖后上方黑色素明显增多,12日龄,眼球后部经鳃盖后上缘至背部前端的条带形成,17日龄,上颌至眼球前部的条带形成;(3)头顶条带:6日龄,头顶正上方黑色斑点增多,18日龄,头部上方黑色斑块分别向前、后延伸,23日龄,头顶正上方黑色条带基本形成;(4)躯干斑块:8日龄,尾部底端出现一个较小的黑色斑块,15日龄,尾柄前部出现3个不规则黑色斑块,25日龄,躯干中后部5个近圆形黑色斑块形成。结果表明,鳜胚胎期至出膜40日龄,体表出现黑色素细胞、黄色素细胞和红色素细胞,体色以黑色为主,主要条带或斑块在仔鱼5日龄后按不同方式逐渐形成,不同皮肤部位的色素层组成与分布方式不同。  相似文献   

4.
鳜消化系统器官发生的组织学   总被引:5,自引:0,他引:5       下载免费PDF全文
利用形态学观察和连续组织切片技术,对出膜后0-35d的鳜仔稚鱼消化系统胚后发育的组织学特征进行了系统研究.结果表明,试验水温为18.0-20.0℃时,鳜初孵仔鱼消化道仅为一段位于脊索下方、卵黄囊上方的实心细胞索,卵黄囊呈椭圆形,含有油球.孵化后第2天,口和肛门形成,消化道贯通.孵化后第4天,消化道上皮细胞出现分化,肝脏和胰脏出现,仔鱼开始由内源性营养向外源性营养转变.孵化后第5天,仔鱼开口摄食,消化道分化成口咽腔、食道、胃、前肠和后肠.孵化后第9天,卵黄囊完全被吸收.此后随着鱼体的生长,消化系统从结构和功能上逐步发育完善和成熟.孵化后第7天前肠中出现空泡,孵化后第8天仔鱼后肠中发现有嗜曙红颗粒,表明肠上皮细胞吸收了脂肪和蛋白质.在孵化后第13天,出现胃腺,标志着稚鱼期的开始.  相似文献   

5.
陈铭  赵金良 《动物学杂志》2022,57(3):447-454
本研究采用组织切片和免疫组织化学方法以及扫描电镜和透射电镜观察并描述了鳜(Siniperca chuatsi)嗅囊组织结构特征和早期发育过程。结果显示,鳜具有2对鼻孔,前后鼻孔紧密相连,具有皮瓣。嗅囊位于嗅腔内,由16~20个初级嗅板构成,为G型嗅囊,初级嗅板通过褶皱产生次级嗅板。嗅板远端边缘为非感觉区,感觉区主要位于嗅板中端和近端。嗅上皮细胞可分为6类,即纤毛非感觉细胞、纤毛感觉细胞、微绒毛感觉细胞、支持细胞、基细胞和黏液细胞。从仔鱼到幼鱼阶段,1~7日龄仔鱼嗅基板较薄,表面有纤毛,10日龄嗅窝内陷并形成嗅腔,26日龄稚鱼形成第1对初级嗅板,55日龄幼鱼形成8对初级嗅板。55日龄前,鳜嗅囊发育较迟缓,初级嗅板侧向平行排列,尚未形成次级嗅板。  相似文献   

6.
鱼类快肌和慢肌分别占据骨骼肌的不同位置,表现不同的生长发育特征.为了解鳜(Sinipercachuatsi)慢肌纤维的胚后发育特征,本研究通过制作孵化后1~33日龄鳜个体的石蜡切片,采用慢肌特异抗体的免疫组织化学染色,观察了背鳍起点处躯干横切面慢肌的发育变化特征,并利用图像分析软件统计慢肌纤维的数目和面积.结果表明,孵化后鳜仔鱼慢肌位于水平肌隔附近,呈楔形,向背、腹两侧生长.孵化后1~9日龄为单层肌纤维,11日龄发育为多层肌纤维,19日龄覆盖侧线附近,33日龄延伸至背侧第2背肌节、腹侧腹部肌肉2/3处,并在水平肌隔和侧线处分别形成两个肌群.位于骨骼肌最外层的扁平状表层细胞,可能为慢肌增生生长的主要来源.躯干单侧慢肌肌纤维数目由孵化后6个增加至315个,总面积从13.18μm2增加到7839.58μm2,孵化后13日龄的增生生长占优势,其他发育阶段,肥大生长一直占主导优势.  相似文献   

7.
长江江豚精巢发育和组织学特征的研究   总被引:4,自引:1,他引:4       下载免费PDF全文
性成熟的江豚精巢明显增大,其重量约为成熟前的14倍,结合有关江豚捕捞和野外生态学资料,初步认为长江江豚属多雌性群体,而成熟的雄性个体具有较大的精巢,可能对保证群体的成功繁殖非常重要。根据精巢的组织学特征,可将江豚精巢发育分为胚胎早期、胚胎晚期、成熟前期和成熟期(包括活动期和不活动期),通过对精巢生精小管管径大小和白膜厚度进行分析,认为成熟江豚精巢活动呈季节性变化。  相似文献   

8.
鳜消化器官的组织学观察   总被引:4,自引:0,他引:4  
鳜(Sinlpe)、caoh。。alsiBasilewsky)在我国的各大河流水系和各淡水湖泊均有分布。鳅鱼是淡水鱼类中的珍品,具有个体大,生长快,肉质鲜嫩和少细刺等特点,有很高的经济价值。l材料和方法鳅不同发育阶段的实验材料,由武汉市东湖养殖场的菱角湖提供。在纽的苗种生长期间对其体长和口裂进行定期测量。取体长约60cm的级进行解剖。记录消化道的长度和重量。然后用Bouln氏液固定,24h后洗净,脱水。最后石蜡包埋,消化道各部位作连续切片,厚度为spin,H--E染色。光镜观察拍摄。2结果和讨论皈的消化道分为口腔,咽,食道,胃,肠和肛门…  相似文献   

9.
长吻wei卵巢发育的组织学观察   总被引:2,自引:0,他引:2  
杨若宾  李禾 《四川动物》1990,9(2):19-20
  相似文献   

10.
利用光镜技术,对粗糙沼虾精巢发育进行了研究,根据精子发生过程中每种生殖细胞所占的比例和发生的次序,并结合精巢的形态特征,把精巢发育过程分为五个时期,即精原细胞期,精母细胞期,精细胞期,成熟精子期及退化期,精原细胞期,精巢小,透明乳白色,生精小管内的生殖细胞以精原细胞为主;精母细胞期;精巢体积增大,半透明乳白色,主要由处于初级精母细胞的次级精母细胞阶段的生殖细胞组成;精细胞期,精巢体积继续增大,颜色加深,生精小管内的生殖细胞以精细胞为主;成熟精子期,精巢体积可达最大,紫红色,生精小管内充满着成熟的精子,退化期;精巢体积减小,半透明乳白色,生精小管内的成熟精子几乎排空。  相似文献   

11.
日本沼虾消化道形态和组织学特点   总被引:8,自引:2,他引:8       下载免费PDF全文
应用石蜡切片和扫描电镜技术对日本沼虾消化道进行了研究。结果表明,食道壁向腔内形成四个纵突,食道上皮由单层柱状细胞构成,上皮下的结缔组织中具有放射肌和皮肤腺,环肌层近于连续。食道和胃连结处的管腔背方具食道瓣,胃内具胃磨、滤器和滤沟等结构,胃的组织学结构中除无皮肤腺分布外与食道相似。中肠较长,约占整个消化道的717%,具一对中肠前盲囊。中肠上皮细胞大致有两种类型,基膜着色深,环肌层连续,纵肌成束分散排列。后肠为一短管,管腔呈迷路状,其中部为一球形膨大的直肠。后肠的组织学结构与前肠相似。  相似文献   

12.
Summary External taste buds abound on barbels of the adult catfish Corydoras arcuatus. When examined by scanning electron microscopy, they are visualized as a series of punctate, conical elevations projecting from the general surface epithelium. All taste buds were found to be of one type. Both their external and internal surface features could be clearly elucidated on intact barbels and in barbels fractured transversely at various positions along their length. An extensive nerve terminal network penetrates the base of each taste bud. Two populations of elongated cells bearing prominent microvilli project through the central pore at the tip of each bud. One set of microvilli is thicker, longer and more club-shaped than its counterpart. While both are randomly distributed within each central pore, the small, short microvilli appear to outnumber the larger ones. A third population of cells, devoid of any apical microvilli, was also seen in some of the taste buds examined internally. These cells do not project to the external surface and are interpreted as basal cells described in previous light and transmission electron microscope studies of taste buds in other vertebrate species. The functional significance of some of these morphological findings is discussed.Supported by grants from the Medical Research Council of Canada and the Muscular Dystrophy Association of CanadaThe excellent technical assistance of Mr. F.T. McConnell is gratefully acknowledged  相似文献   

13.
The ultrastructure of taste and touch receptors of the Frog's taste organ   总被引:4,自引:0,他引:4  
Summary The taste buds from fungiform papillae and the hard palate of frogs were investigated with the scanning and transmission electron microscopes. An immature pre-taste cell and a mature taste cell can be differentiated. Only the mature taste cell exhibits synaptic contact with the afferent taste fibre. Glandular and satellite supporting cells envelop the thin apical processes of the sensory cells. At the base of the taste disc up to 10 Merkel cells form a complex with nerve endings. There are two types of myelinated fibres, large and small. The small fibre innervates the taste cells, the thicker nerve fibre the Merkel cells. The occurrence of two types of receptors explains physiological results.Supported by the Deutsche Forschungsgemeinschaft Rezeptorphysiologie.  相似文献   

14.
The ultrastructural changes occurring in the fully functional oviduct of Isa Brown laying hens were studied during various stages of the laying cycle. Hens were killed at different positions of the egg in the oviduct. The oviduct was lined by ciliated and non-ciliated cells (also referred to as granular cells). The granular cells in the infundibulum contributed to secretion during egg formation, whereas ciliated cells showed little evidence of secretion. Ultrastructural changes were recorded in the granular and glandular cells of the distal infundibulum. In the magnum, the surface ultrastructure revealed glandular openings associated with the ciliated and granular cells. Cyclic changes were recorded in the glandular cells of the magnum. With respect to the three observed types of glands, the structure of gland type A and C cells varied at different egg positions in the oviduct, whereas type B cells represented a different type of gland cell containing amorphous secretory granules. The surface epithelium of the isthmus was also lined by mitochondrial cells. Two types of glandular cell (types 1 and 2) were recorded in the isthmus during the laying cycle. Intracisternal granules were found in type 2 cells of the isthmus. A predominance of glycogen particles occurred in the tubular shell gland. The granular cells in the shell gland contain many vacuoles. During egg formation, these vacuoles regressed following the formation of extensive rough endoplasmic reticulum; the reverse also occurred. The disintegrated material found in the vacuoles may have been derived from the disintegrating granules. The Physiology Teaching Unit, University of New England, provided financial support to K. Chousalkar for this study.  相似文献   

15.
Prediction of germination potential prior to cone harvesting is problematic due to great variation of maturity between and within northern Scots pine (Pinus sylvestris L.) seed lots. In forest seed centres maturity is traditionally evaluated on the basis of the embryo size using X-radiography, which is a relevant method for predicting germination potential of mature seeds. Still, except for embryo growth, maturation also includes morphological changes in the surface tissues, i.e. the seed coat, the nucellar layers, and the megaspore membrane, which we explored in this study. During two growing seasons 10–30 developing cones were harvested 11 times on two trees at each of three locations, at the boreal conifer forest line (68°48′ N), at the Arctic Circle (66°53′ N), and in central Finland (62°70′ N). Seeds were detached by hand for moisture content measurements, X-radiography, germination tests, light microscopic and field emission scanning electron microscopic studies. Our results confirmed the close relationship between temperature and the embryo growth, whereas maturation of the surface structures and the embryo were partly separate processes. Microscopy proved that biochemical maturation of the sheltering surface structures was partly light-reactive and continued as well as further development of the embryo for several weeks after the embryo had reached its full size. The reliability of radiography improved when the moisture content of seeds approached 30% and the temperature sum was about 800 degree days. The simple drying test of seeds from manually opened cones presented here can supply needed additional information for early prediction of the germination capacity particularly in the northern seed lots.  相似文献   

16.
Summary The classification of human placental villi was reviewed on the basis of material prepared by means of special methods. The material from in situ normal-term placentae was biopsied by aspiration into glutaraldehyde. The classification was made on the basis of light-microscopic observations of semithin sections, reconstructions from serial sections, and scanning-electron micrographs. The peripheral villous tree is roughly divided into stem (ramuli), intermediate and terminal villi. The intermediate villi may be further subdivided as mature and immature types, which are found between the stem and terminal villi. Some of the terminal villi possess a local specialization described as the neck region. The histological characteristics and the branching pattern of each type are described, and the basis of the proposed classification is discussed.The authors wish to acknowledge the technical help of Mrs. Elke Böhm  相似文献   

17.
Summary Mouse taste buds were investigated following administration of monoamines and their precursors by fluorescence and electron microscopy. The appearance of fluorescent cells within the taste bud and the ultrastructural changes of vesicles in the gustatory cells were due to the treatment of 5-hydroxytryptophan. Small dense-cored vesicles (30–60 nm in diameter) appeared throughout the cytoplasm and accumulated especially at the presynaptic membranes of afferent synapses. Large dense-cored vesicles (80–100 nm) increased twice in number, and electron densities of their cores became more dense as compared with untreated mice. Fluorescent cells appeared in the taste bud of l-DOPA treated mice, whereas no ultrastructural changes were observed. These results suggest that the gustatory cells of the taste bud are capable of taking up and storing monoamines, which might act as neurotransmitters from the gustatory cells to the nerves.  相似文献   

18.
Summary The development of the olfactory organ in the rainbow fish, Nematocentris maccullochi, was studied using scanning and transmission electron microscopy; it was compared with the developmental process in other teleosts, especially in the closely related atherinids and cyprinodonts. The formation of the nares parallels that in atherinids, salmonids, cyprinids and heterosomats, but differs from that found in cyprinodonts. Another ontogenetic feature in which the olfactory organs of the rainbow fish and also of atherinids differ from those of cyprinodonts, is the occurrence of transitory kinociliary cells which disappear during the postlarval period. The divergent evolutionary pathways are discussed with reference to experimental investigations. During development, ciliated and microvillous receptor cell types occur. At the primary larval stage ciliated receptor neurons are exclusively present. At a later stage the microvillous type develops and becomes equal in frequency. Thus, the microvillous receptor represents a separate type of olfactory neuron and is not a progenitor of the ciliated receptor cell.This work was supported by the Deutsche ForschungsgemeinschaftThe authors would like to acknowledge Prof. G. Hartmann (Hamburg) and Prof. V. Storch (Kiel) for use of the SEM, Prof. K. Seifert (Neumünster) for valuable discussion. For skillful technical assistance we are indebted to Miss C. Heim, Mrs. K. Hoffmann, and Mr. H.P. Dreyer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号