首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyzed the mechanism of recombination-dependent DNA replication in bacteriophage T4-infected Escherichia coli using plasmids that have sequence homology to the infecting phage chromosome. Consistent with prior studies, a pBR322 plasmid, initially resident in the infected host cell, does not replicate following infection by T4. However, the resident plasmid can be induced to replicate when an integrated copy of pBR322 vector is present in the phage chromosome. As expected for recombination-dependent DNA replication, the induced replication of pBR322 required the phage-encoded UvsY protein. Therefore, recombination-dependent plasmid replication requires homology between the plasmid and phage genomes but does not depend on the presence of any particular T4 DNA sequence on the test plasmid. We next asked whether T4 recombination-dependent DNA replication can be triggered by a double-strand break (dsb). For these experiments, we generated a novel phage strain that cleaves its own genome within the nonessential frd gene by means of the I-TevI endonuclease (encoded within the intron of the wild-type td gene). The dsb within the phage chromosome substantially increased the replication of plasmids that carry T4 inserts homologous to the region of the dsb (the plasmids are not themselves cleaved by the endonuclease). The dsb stimulated replication when the plasmid was homologous to either or both sides of the break but did not stimulate the replication of plasmids with homology to distant regions of the phage chromosome. As expected for recombination-dependent replication, plasmid replication triggered by dsbs was dependent on T4-encoded recombination proteins. These results confirm two important predictions of the model for T4-encoded recombination-dependent DNA replication proposed by Gisela Mosig (p. 120-130, in C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget (ed.), Bacteriophage T4, 1983). In addition, replication stimulated by dsbs provides a site-specific version of the process, which should be very useful for mechanistic studies.  相似文献   

2.
Reciprocal recombination between T4 DNA cloned in plasmid pBR322 and homologous sequences in bacteriophage T4 genomes leads to integration of complete plasmid molecules into phage genomes. Indirect evidence of this integration comes from two kinds of experiments. Packaging of pBR322 DNA into mature phage particles can be detected by a DNA--DNA hybridization assay only when a T4 restriction fragment is cloned in the plasmid. The density of the pBR322 DNA synthesized after phage infection is also consistent with integration of plasmid vector DNA into vegetative phage genomes. Direct evidence of plasmid integration into phage genomes in the region of DNA homology comes from genetic and biochemical analysis of cytosine-containing DNA isolated from mature phage particles. Agarose gel electrophoresis of restriction endonuclease-digested DNA, followed by Southern blot analysis with nick-translated probes, shows that entire plasmid molecules become integrated into phage genomes in the region of T4 DNA homology. In addition, this analysis shows that genomes containing multiple copies of complete plasmid molecules are also formed. Among phage particles containing at least one integrated copy, the average number of integrated plasmid molecules is almost ten. A cloning experiment done with restricted DNA confirms these conclusions and illustrates a method for walking along the T4 genome.  相似文献   

3.
A bacteriophage T4 insertion/substitution vector system has been developed as a means of introducing in vitro generated mutations into the T4 chromosome. The insertion/substitution vector is a 2638-base pair plasmid containing the pBR322 origin of replication and ampicillin resistance determinant, a T4 gene 23 promoter/synthetic supF tRNA gene fusion, and a polylinker with eight unique restriction enzyme recognition sites. A T4 chromosomal "target" DNA sequence is cloned into this vector and mutated by standard recombinant DNA techniques. Escherichia coli cells containing this plasmid are then infected with T4 bacteriophage that carry amber mutations in two essential genes. The plasmid integrates into the T4 chromosome by recombination between the plasmid-borne T4 target sequence and its homologous chromosomal counterpart. The resulting phage, termed "integrants," are selectable by the supF-mediated suppression of their two amber mutations. Thus, although the integrants comprise 1-3% or less of the total phage progeny, growth on a nonsuppressing host permits their direct selection. The pure integrant phage can be either analyzed directly for a possible mutant phenotype or transferred to nonselective growth conditions. In the latter case, plasmid-free phage segregants rapidly accumulate due to homologous recombination between the duplicated target sequences surrounding the supF sequence in each integrant chromosome. A major fraction of these segregants will retain the in vitro generated mutation within their otherwise unchanged chromosomes and are isolated as stable mutant bacteriophage. The insertion/substitution vector system thereby allows any in vitro mutated gene to be readily substituted for its wild-type counterpart in the bacteriophage T4 genome.  相似文献   

4.
5.
Regulation of Expression of Cloned Bacteriophage T4 Late Gene 23   总被引:5,自引:4,他引:1       下载免费PDF全文
The parameters governing the activity of the cloned T4 gene 23, which codes for the major T4 head protein, were analyzed. Suppressor-negative bacteria carrying wild-type T4 gene 23 cloned into plasmid pCR1 or pBR322 were infected with T4 gene 23 amber phage also carrying mutations in the following genes: (i) denA and denB (to prevent breakdown of plasmid DNA after infection) and (ii) denA, denB, and, in addition, 56 (to generate newly replicated DNA containing dCMP) and alc/unf (because mutations in this last gene allow late genes to be expressed in cytosine-containing T4 DNA). Bacteria infected with these phage were labeled with (14)C-amino acids at various times after infection, and the labeled proteins were separated by one-dimensional gel electrophoresis so that the synthesis of plasmid-coded gp23 could be compared with the synthesis of other, chromosome-coded T4 late proteins. We analyzed the effects of additional mutations that inactivate DNA replication proteins (genes 32 and 43), an RNA polymerase-binding protein (gene 55), type II topoisomerase (gene 52), and an exonuclease function involved in recombination (gene 46) on the synthesis of plasmid-coded gp23 in relation to chromosome-coded T4 late proteins. In the denA:denB:56:alc/unf genetic background, the phage chromosome-borne late genes followed the same regulatory rules (with respect to DNA replication and gp55 action) as in the denA:denB genetic background. The plasmid-carried gene 23 was also under gp55 control, but was less sensitive than the chromosomal late genes to perturbations of DNA replication. Synthesis of plasmid-coded gp23 was greatly inhibited when both the type II T4 topoisomerase and the host's DNA gyrase are inactivated. Synthesis of gp23 was also substantially affected by a mutation in gene 46, but less strongly than in the denA:denB genetic background. These observations are interpreted as follows. The plasmid-borne T4 gene 23 is primarily expressed from a late promoter. Expression of gene 23 from this late promoter responds to an activation event which involves some structural alteration of DNA. In these respects, the requirements for expressing the plasmid-borne gene 23 and chromosomal late genes are very similar (although in the denA:denB:56:alc/unf genetic background, there are significant quantitative differences). For the plasmid-borne gene 23, activation involves the T4 gp46, a protein which is required for DNA recombination. However, for the reasons presented in the accompanying paper (Jacobs et al., J. Virol. 39:31-45, 1981), we conclude that the activation of gene 23 does not require a complete breakage-reunion event which transposes that gene to a later promoter on the phage chromosome. Ways in which gp46 may actually be involved in late promoter activation on the plasmid are discussed.  相似文献   

6.
We have proposed that the ability of T4 to produce non-glucosylated progeny after a single cycle of growth on a galU rglA rglB+ mutant of Escherichia coli is due to the initiation of the rglB+ function by a phage-coded, anti-restriction endonuclease protein. Based on this hypothesis, we screened T4 deletion mutants for failure to give a burst in this host. The absence of an arn gene in phage mutants lacking the 55.5- to 58.4-kilobase region is verified by their inability to protect secondary infecting non-glucosylated phage from rglB-controlled cleavage. A functional arn gene was cloned on plasmid pBR325, and the 0.8-kilobase insert DNA was shown to be homologous to the DNA missing in the arn deletion phage.  相似文献   

7.
Bacteriophage T4 DNA replication initiates from origins at early times of infection and from recombinational intermediates as the infection progresses. Plasmids containing cloned T4 origins replicate during T4 infection, providing a model system for studying origin-dependent replication. In addition, recombination-dependent replication can be analyzed by using cloned nonorigin fragments of T4 DNA, which direct plasmid replication that requires phage-encoded recombination proteins. We have tested in vivo requirements for both plasmid replication model systems by infecting plasmid-containing cells with mutant phage. Replication of origin and nonorigin plasmids strictly required components of the T4 DNA polymerase holoenzyme complex. Recombination-dependent plasmid replication also strictly required the T4 single-stranded DNA-binding protein (gene product 32 [gp32]), and replication of origin-containing plasmids was greatly reduced by 32 amber mutations. gp32 is therefore important in both modes of replication. An amber mutation in gene 41, which encodes the replicative helicase of T4, reduced but did not eliminate both recombination- and origin-dependent plasmid replication. Therefore, gp41 may normally be utilized for replication of both plasmids but is apparently not required for either. An amber mutation in gene 61, which encodes the T4 RNA primase, did not eliminate either recombination- or origin-dependent plasmid replication. However, plasmid replication was severely delayed by the 61 amber mutation, suggesting that the protein may normally play an important, though nonessential, role in replication. We deleted gene 61 from the T4 genome to test whether the observed replication was due to residual gp61 in the amber mutant infection. The replication phenotype of the deletion mutant was identical to that of the amber mutant. Therefore, gp61 is not required for in vivo T4 replication. Furthermore, the deletion mutant is viable, demonstrating that the gp61 primase is not an essential T4 protein.  相似文献   

8.
Summary A cytosine-substitution type mutant of bacteriophage T4 (T4dC phage) has been shown to mediate the transfer of plasmid pBR322. The transduction frequency was around 10-2 per singly infected cell at low multiplicity of infection. The transductants contained either a monomer or multimers of pBR322. The transducing capacity of T4dC phage was resistant to methylmethanesulfonate treatment. The results of Southern blotting experiments have indicated that the pBR322 DNA exists as head-to-tail concatemers in the transducing particles. The mechanism of transfer of pBR322 mediated by T4dC phages is discussed  相似文献   

9.
L W Black 《Gene》1986,46(1):97-101
Concatemeric phage lambda imm434 DNA packaged in vitro into phage T4 particles produced plaques on a selective host. Moreover, lambda DNA containing a pBR322 derivative flanked by the lambda attL and attR sites could be specifically recircularized by excisive lambda recombination to yield the pBR322 derivative. A host deficient in generalized recombination and containing a defective lambda c Its prophage which provided Int and Xis proteins was the recipient for this plasmid derivative carried by T4. Such a T4-lambda hybrid may potentially allow almost one T4 headful of donor DNA (166 kb) to be packaged and recircularized.  相似文献   

10.
Genetic complementation by cloned bacteriophage T4 late genes.   总被引:7,自引:5,他引:2       下载免费PDF全文
Bacteriophage T4 containing nonsense mutations in late genes was found to be genetically complemented by four conjugate T4 genes (7, 11, 23, or 24) located on plasmid or phage vectors. Complementation was at a very low level unless the infecting phage carried a denB mutation (which abolishes T4 DNA endonuclease IV activity). In most experiments, the infecting phage also had a denA mutation, which abolishes T4 DNA endonuclease II activity. Mutations in the alc/unf gene (which allow dCMP-containing T4 late genes to be expressed) further increased complementation efficiency. Most of the alc/unf mutant phage strains used for these experiments were constructed to incorporate a gene 56 mutation, which blocks dCTP breakdown and allows replication to generate dCMP-containing T4 DNA. Effects of the alc/unf:56 mutant combination on complementation efficiency varied among the different T4 late genes. Despite regions of homology, ranging from 2 to 14 kilobase pairs, between cloned T4 genes and infecting genomes, the rate of formation of recombinants after T4 den:alc phage infection was generally low (higher for two mutants in gene 23, lower for mutants in gene 7 and 11). More significantly, when gene 23 complementation had to be preceded by recombination, the complementation efficiency was drastically reduced. We conclude that high complementation efficiency of cloned T4 late genes need not depend on prior complete breakage-reunion events which transpose those genes from the resident plasmid to a late promoter on the infecting T4 genome. The presence of the intact gene 23 on plasmids reduced the yield of T4 phage. The magnitude of this negative complementation effect varied in different plasmids; in the extreme case (plasmid pLA3), an almost 10-fold reduction of yield was observed. The cells can thus be said to have been made partly nonpermissive for this lytic virus by incorporating a part of the viral genome.  相似文献   

11.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

12.
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C.  相似文献   

13.
Are single-stranded circles intermediates in plasmid DNA replication?   总被引:38,自引:7,他引:31       下载免费PDF全文
Plasmid pC194 exists as circular double-stranded and single-stranded DNA in Bacillus subtilis and Staphylococcus aureus. We report here that the plasmid pHV33, composed of pBR322 and pC194, exists as double- and single-stranded DNA in Escherichia coli, provided that the replication functions of pC194 are intact. Single-stranded pHV33 DNA is converted to double-stranded DNA by complementary strand synthesis probably initiated at rriB, a primosome assembly site present on pBR322. The efficiency of complementary strand synthesis affects the double-stranded copy number, which suggests that single-stranded DNA is a plasmid replication intermediate.  相似文献   

14.
Plasmid DNA was used to study gamma-radiation-induced recombination and mutagenesis in Escherichia coli host cells. Plasmid pBRP1, a derivative of pBR322 containing the lac operon of E. coli, was irradiated with 60Co gamma rays prior to transformation into E. coli strains of different recA and lac genotypes. Plasmid-chromosome recombination was assayed in lacY1 host cells, whereas plasmid mutagenesis was assayed in delta lac host cells lacking chromosomal sequences homologous to the plasmid. Both recombinant and mutant plasmids were identified by the phenotypic changes in lactose utilization, and confirmed by restriction analysis of isolated plasmids. Plasmid-chromosome recombination was induced to high levels (about 20% of survivors at 700 Gy) and was dependent on the host recA gene. Plasmid mutagenesis occurred at lower levels (about 1.5% of survivors at 600 Gy) and was relatively independent of the recA gene. Plasmid survival was unaffected by the presence or absence of host recA mutations or the potential for plasmid-chromosome recombination.  相似文献   

15.
Replication region of bacteriophage lambda DNA was cloned into pBR322 plasmid by the use of two restriction enzymes--PstI and HindIII. The restriction analysis of four obtained plasmids revealed that lambda DNA was cloned in both orientations. Recombinant plasmids were transferred to the minicell-producing strain of E. coli and synthesis of the plasmid-mediated proteins was analysed by polyacrylamide-gel electrophoresis. All four recombinant plasmids produced lambda DNA replication proteins pO and pP as well as some proteins specific for pBR322. The orientation of cloned fragment did not affect the synthesis of lambda DNA replication proteins.  相似文献   

16.
Initiation of chromosomal DNA replication of several Escherichia coli dnaA (Ts) strains is diminished in cell harbouring pBR322 hybrid plasmids carrying both oriC and the adjacent 16kD gene promoter of E. coli K12. This perturbance, resulting in very slow growth, is caused both by the dnaA allele and the E. coli B/r-derived region of the replication origin of these strains. Cloning and DNA sequence analysis of the E. coli B/r replication origin revealed several base differences as compared to the E. coli K12 sequence. The replication origin of temperature sensitive fast growing mutants, originating from a homologous exchange between chromosomal and plasmid DNA sequences were also cloned. Sequence data showed that a single base change within the promoter of the 16kD gene of these dnaA (Ts) strains is able to suppress the inhibition of chromosomal DNA replication by the mentioned pBR322 hybrid plasmids. Our results strongly indicate a role of the 16kD gene promoter in control of initiation of chromosomal DNA replication.  相似文献   

17.
Bacteriophage lambda gt11 has been used quite extensively for producing cDNA libraries. The cDNA inserts are usually subcloned into a plasmid vector for large scale production and analysis. However, isolating the recombinant DNA of interest from the phage clones can be a tedious task. Since the E. coli strain Y1088 used for lambda gt11 phage infection carries a pBR322-derived plasmid endogenously, we reasoned that this endogenous plasmid could be used directly for cloning the cDNA phage insert. In this report, we describe a method in which cDNA inserts from lambda gt11 phage were cloned directly into the pBR322 plasmid vector, bypassing the time-consuming procedures of preparing plasmid DNA as a subcloning vector. This method is likely to be extended to the cloning of DNA inserts derived from other phage lambda vectors when bacteria containing endogenous pBR322 are used as host cells.  相似文献   

18.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

19.
Bacteriophage T7 DNA is a linear duplex molecule with a 160 base-pair direct repeat (terminal redundancy) at its ends. During replication, large DNA concatemers are formed, which are multimers of the T7 genome linked head to tail through recombination at the terminal redundancy. We define the sequence that results from this recombination, a mature right end joined to the left end of T7 DNA, as the concatemer junction. To study the processing and packaging of T7 concatemers into phage particles, we have cloned the T7 concatemer junction into a plasmid vector. This plasmid is efficiently (at least 15 particles/infected cell) packaged into transducing particles during a T7 infection. These transducing particles can be separated from T7 phage by sedimentation to equilibrium in CsCl. The packaged plasmid DNA is a linear concatemer of about 40 x 10(3) base-pairs with ends at the expected T7 DNA sequences. Thus, the T7 concatemer junction sequence on the plasmid is recognized for processing and packaging by the phage system. We have identified a T7 DNA replication origin near the right end of the T7 genome that is necessary for efficient plasmid packaging. The origin, which is associated with a T7 RNA polymerase promoter, causes amplification of the plasmid DNA during T7 infection. The amplified plasmid DNA sediments very rapidly and contains large concatemers, which are expected to be good substrates for the packaging reaction. When cloned in pBR322, a sequence containing only the mature right end of T7 DNA is sufficient for efficient packaging. Since this sequence does not contain DNA to the right of the site where a mature T7 right end is formed, it was expected that right ends would not form on this DNA. In fact, with this plasmid the right end does not form at the normal T7 sequence but is instead formed within the vector. Apparently, the T7 packaging system can also recognize a site in pBR322 DNA to produce an end for packaging. This site is not recognized solely by a "headful" mechanism, since there can be considerable variation in the amount of DNA packaged (32 x 10(3) to 42 x 10(3) base-pairs). Furthermore, deletion of this region from the vector DNA prevents packaging of the plasmid. The end that is formed in vector DNA is somewhat heterogeneous. About one-third of the ends are at a unique site (nucleotide 1712 of pBR322), which is followed by the sequence 5'-ATCTGT-3'. This sequence is also found adjacent to the cut made in a T7 DNA concatemer to produce a normal T7 right end.  相似文献   

20.
Transmission of ColE1/pMB1-derived plasmids, such as pBR322, from Escherichia coli donor strains was shown to be an efficient way to introduce these plasmids into Agrobacterium. This was accomplished by using E. coli carrying the helper plasmids pGJ28 and R64drd11 which provide the ColE1 mob functions and tra functions, respectively. For example, the broad host-range replication plasmid, pGV1150, a co-integrate plasmid between pBR322 and the W-type mini-Sa plasmid, pGV1106, was transmitted from E. coli to A. tumefaciens with a transfer frequency of 4.5 x 10(-3). As pBR322 clones containing pTiC58 fragments were unable to replicate in Agrobacterium, these clones were found in Agrobacterium only if the acceptor carried a Ti plasmid, thus allowing a co-integration of the pBR322 clones with the Ti plasmid by homology recombination. These observations were used to develop an efficient method for site-specific mutagenesis of the Ti plasmids. pTiC58 fragnents, cloned in pBR322, were mutagenized in vitro and transformed into E. coli. The mutant clones were transmitted from an E. coli donor strain containing pGJ28 and R64drd11 to an Agrobacterium containing a target Ti plasmid. Selecting for stable transfer of the mutant clone utilizing its antibiotic resistance marker(s) gave exconjugants that already contained a co-integrate plasmid between the mutant clone and the Ti plasmid. A second recombination can dissociate the co-integrate plasmid into the desired mutant Ti plasmid and a non-replicating plasmid formed by the vector plasmid pBR322 and the target Ti fragment. These second recombinants lose the second plasmid and they are identified by screening for the appropriate marker combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号